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Abstract

This work compares heat transfer characteristics across a square cavity partially filled with a fixed amount of

conducting solid material. The solid phase is shaped into two different geometries, namely square and cylindrical

rods, which are horizontally displaced inside the cavity. Comparisons are obtained by numerically solving a

conjugate heat transfer problem that considers both the solid and the fluid space. Governing equations are solved

using the finite volume method and the algebraic equation set is relaxed with the SIP procedure. The average

Nusselt number at the hot wall, obtained from the cavity with square obstacles and for several Darcy numbers, are

compared with those calculated with circular obstacles. When comparing the two geometries considering the same

modified Rayleigh number Ram, this study shows that the average Nusselt number for cylindrical rods are slightly

lower than those for square rods.
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1. Introduction

Natural convection in fluid saturated enclosures having a distributed solid phase constitutes an

important configuration with several applications in engineering, science and environmental analyses.

Heat exchangers, underground spread of pollutants, environmental control, grain storage, food
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processing, packed-bed catalytic reactors and nuclear reactor safety are just some applications of this

subject of study. In some cases, such systems can be treated as a porous medium, which can be

investigated by suitable mathematical analyses.

Accordingly, models found in the literature dealing with flows in porous media are mostly based on

experimental and averaging procedures. The well known macroscopic approach, based on the volume

average principles, is traditionally used in the analysis of flows in several media such as soil and packed

beds. However, this approach gives no details at the pore level. On the other hand, porous media

problems can be tackled by means of the microscopic approach, which solves the Navier–Stokes

equation at the particle level, although the computational cost involved is considerably higher. The

understanding of the properties of such microscopic approach can, ultimately, aid the development of

less expensive macroscopic models when dealing with natural convection in porous media.

Studies considering the distribution of a fixed amount of solid material inside an enclosure for laminar

buoyancy driven flows can be found in House et al. [1] for the case of a single conducting square solid

located at the center of a square cavity. The work of Merrikh and Mohamad [2] also considered heat

transfer from within a fluid saturated enclosure with thermal energy being generated by discrete,

disconnected solid bodies. Later, in Merrikh et al. [3], a study in which the continuum and the porous-

continuum models were compared for natural laminar convection in a non-homogeneous differentially

heated enclosure, without heat generation, was documented. A work also considering the laminar

macroscopic and microscopic approach for circular cylinders is presented in Massarotti et al. [4]. In the

work of Merrikh et al. [5] an extension of the work performed by Merrikh and Mohamad [2] was carried

out. Finally, in Merrikh and Lage [6,7], the effects of distributing a fixed amount of solid material inside

a porous medium enclosure on the heat transfer process were recently studied.

Motivated by the foregoing, both laminar and turbulent buoyant flows in porous media considering

the macroscopic approach were documented in de Lemos and Braga [8,9] and comparisons between

microscopic and macroscopic computations for natural convection were carried out in Braga and de

Lemos [10]. All of these papers are part of a systematic development of a turbulence model for flow in

porous media based on the double-decomposition concept [11–15], which has been also applied to non-

buoyant heat transfer [16,17], mass transfer [18], double-diffusion [19], thermal non-equilibrium

transport [20], interface problems [21–23] and flow in pipes with porous inserts [24].

Following this systematic analysis, this work presents numerical solutions for steady laminar natural

convection within a square cavity filled with a fixed amount of conducting solid material consisting of

either circular or square obstacles. Laminar flow is here considered first with turbulence to be added in

the future. The long-term objective of this contribution is to compare overall heat transfer characteristics

across filled cavities when the solid phase presents different morphologies.
2. Problem considered

The problem here investigated is schematically presented in Fig. 1, which considers a square cavity of

side H=1 m partially filled with a fixed amount of conducting solid material in the form of circular

obstacles of diameter Dp (Fig. 1a) and with square rods of size Dp (Fig. 1c). In both cases, the size of the

rods is such that the amount of solid material is the same. Corresponding computational grids are shown

in Fig. 1b and d, respectively. The rods are equally distributed within the cavity. Also, the enclosure is

isothermally heated from the left, with temperature TH prevailing over that side, and cooled from the
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Fig. 1. Schematic of the problem. Cavity with: a) circular rods and b) elliptically generated grid; c) square rods; and d)

algebraically generated grid.
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opposing surface, where a constant temperature TC is maintained. The horizontal walls are kept

insulated. To analyze such an arrangement, the microscopic approach is here employed, in which the

flow equations are solved within the void (fluid) space. Results for the case of square rods (Fig. 1c–d)

were fully documented in Braga and de Lemos [10] and for that they will just be reproduced here for the

sake of comparison and clarity.
3. Governing equations and numerics

For steady flow, the equations for continuity, momentum and temperature take the form:

Bu

Bx
þ Bv

By
¼ 0 ð1Þ

u
Bu

Bx
þ v

Bu

By
¼ � 1

q
BP

Bx
þ mq2u ð2Þ

u
Bv

Bx
þ v

Bv

By
¼ � 1

q
BP

By
þ mq2vþ gb T � Trefð Þ ð3Þ
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u
BT

Bx
þ v

BT

By
¼ aq2T ð4Þ

where u and v are the velocity components in x and y directions respectively, q is the density of the fluid,

P is the total pressure and m is the kinematic viscosity of the fluid. The gravity acceleration is defined by

g and b is the thermal expansion coefficient. T and Tref are the temperature and the reference

temperature, respectively, and a is the thermal diffusivity.

The rods inside the cavity participate on the momentum transfer through their fluid–solid interfaces,

over which, in turn, the no-slip condition was applied. The blocks are conducting and the energy balance

equation valid inside them is given by:

ksq2T ¼ 0: ð5Þ

The numerical method employed for discretizing the governing equations is the control-volume

approach with a collocated grid. Further, the grids shown in Fig. 1 were elliptically generated for the

circular rod case (Fig. 1a) and algebraically calculated for the square obstacles (Fig. 1c). A hybrid

scheme, upwind differencing scheme (UDS) and central differencing scheme (CDS), was used for

interpolating the convection fluxes. The well-established SIMPLE method [25] was followed for

handling the pressure–velocity coupling. The algebraic equation system was relaxed by the SIP

procedure [26].
4. Non-dimensional parameters

For analyzing the configurations of Fig. 1, one can define a modified Rayleigh number Ram in the

form,

Ram ¼ RafDaeq ð6Þ

with,

Raf ¼
gbH3 TH � TCð Þ

va
ð7Þ

Daeq ¼
Keq

H2
ð8Þ

where Daeq and Keq are bequivalentQ permeability and Darcy number, respectively, for the configurations

of Fig. 1.

If values for Raf and Daeq are selected such that Ram is kept constant, a family of cases is obtained.

Each case might represent distinct systems consisting of different fluids and solid distribution, but all

having the same modified Rayleigh number Ram. Considering such premise, the present work intends to

study a family of cases with different fluids in distinct media, having all of them Ram=10
4.

In order to associate an equivalent value for the permeability of the arrangements in Fig. 1a and c, the

correlation of Nakayama and Kuwahara [27] is applied. That correlation is based on the work of Ergun

[28] and reads,
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Keq ¼
D2

p/
3

c 1� /ð Þ2
;

c ¼ 144 for circular rods

c ¼ 120 for square rods

�
ð9Þ

where Dp, as seen, is a characteristic dimension of the rod and /=DVf /DV. For the geometries of Fig. 1,

the porosity / calculated as,

/ ¼ 1� N
p
4

Dp=H
� �2

for circular rods ð10Þ

and

/ ¼ 1� N Dp=H
� �2

for square rods ð11Þ

is kept constant for a variable number of rods N.
5. Results and discussion

In order to validate the code, a case with a single conducting square solid located at the center of the cavity was

run showing good agreement with those summarized in Table 1.

As said, the main idea of this work is to compare heat transfer simulations in a square cavity filled with two

types of obstacles, namely, circular and square rods. Comparisons are based on similar conditions in order to verify

if the two geometries considered yield equivalent values for the overall Nusselt numbers. For circular rods, runs

were performed with grids of sizes 120�120, 160�160 and 200�200 control volumes for N =4, N =16 and

N =64, respectively, where N is the number of obstacles inside the cavity.

For the sake of comparison, all cases were run with Ram=RafDaeq=10
4. A Darcy number was then associated

with the flow in the arrangements of Fig. 1 with a permeability Keq calculated by expression (9). If the two

geometries here considered have the same porosity / =DVf/DV, then the used of (9) yield a permeability Keq for

circular rods greater than that calculated for square obstacles. This result, however, is expected since it is

easier for a bulk of fluid to flow through a bed with circular rods, which poses less resistance to fluid

participles for the same imposed pressure drop.
Further, for an arrangement containing either circular or square rods, distinct values of the Dp yielded

different Keq values. However, from the definitions of Raf and Daeq, for different Darcy numbers one has to

modify the value of Raf in order to keep Ram fixed at 104. Thus, coefficient b in Eq. (7) is assumed to be

the parameter to maintain Ram constant when the permeability is varied, since the other quantities are kept fixed.

Also, in all cases here analyzed solid obstacles in the cavity yield an overall cavity porosity / =0.84. The fluid

Prandtl number, Pr, and the conductivity ratio between the solid and fluid phases, ks/kf, were assumed to be equal

to unity.

Figs. 2 and 3 show the streamlines and isotherms, respectively, for a square cavity filled with circular and

square obstacles. For circular rods the equivalent Daeq ranged from 0.8188�10�2 to 5.1178�10�4 whereas for
Table 1

Average Nusselt number for a square cavity with a single conducting solid at the center; Raf =10
5, Pr =0.71 (unless otherwise

noted)

Raf Dp [m] ks/kf House et al. [1] Merrikh and Lage [6] Present results Pr =1

105 0.5 0.2 4.624 4.605 4.667

105 0.5 5.0 4.324 4.280 4.375
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Fig. 2. Streamlines for a square cavity filled with circular (left) and square (right) obstacles with, Ram=10
4, / =0.84 and ks/

kf=1; a) N =4, b) N =16, c) N =64.
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square obstacles the range for Daeq was 0.7717�10�2 to 4.823�10�4. All values for square rods were taken

from Braga and de Lemos [10] where a more in dept analyses for that geometry can be found.

Also, according to Braga and de Lemos [10], the higher the number of obstacles inside the clear cavity, the

higher the similarity of the flow pattern between the two models, i.e., the microscopic and the macroscopic

approaches resemble each other for greater values of N. In other words, the macroscopic model seems to be more

representative of reality when the number of obstacles inside the cavity is higher, which, in turn, correspond to

lower permeability cases. However, the lower the permeability, the higher the difference between the average

Nusselt numbers between the two models (see [10]).



Fig. 3. Isotherms for a square cavity filled with circular (left) and square (right) obstacles with, Ram=10
4, / =0.84 and ks/kf =1;

a) N =4, b) N =16, c) N =64.
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Fig. 2 clearly shows that the recirculation intensity increases as the medium permeability decreases and the

flow patterns comprises primarily cells of relatively high velocity, which circulate around of the entire cavity.

However, the secondary recirculation that appears in the center of the cavity, for the higher Darcy numbers

analyzed, tends to disappear as the permeability decreases. In a similar way, the temperature gradients are

stronger near the vertical walls, but decrease at the center. Fig. 3 also shows that, the higher the number of

obstacles, the higher the stratification of the thermal field. According to Merrikh and Lage [6], as the number

of square rods increases, and their size becomes reduced, the flow tends to migrate away from the wall

towards the center of the cavity. This phenomenon is seen in Merrikh and Lage [6] as a response of the



Table 2

Average Nusselt number for a square cavity filled with obstacles with fixed Ram=10
4, / =0.84 and ks/kf=1

Rod type N =1 N =4 N =16 N =64

Daeq Nu Daeq Nu Daeq Nu Daeq Nu

5 0.3087�10�1 6.5254 0.7717�10�2 9.6204 1.929�10�3 13.7276 4.823 �10�4 19.4821

o 0.3249�10�1 6.4315 0.8188�10�2 9.4945 2.047�10�3 13.6534 5.1178�10�4 18.2165

5, Square rods; o, circular rods.
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system due to the increasing flow resistance closer to the solid wall, as the obstacles get closer to the solid

surface.

Further, the available literature shows that for the non-Darcy regime in a porous cavity [29–31], fluid flow and

heat transfer depend on the fluid Rayleigh number, Raf, and on the Darcy number, Da, when other parameters,

such as porosity, Prandtl number, and conductivity ratio between the fluid and solid matrix, are held constant. In

Braga and de Lemos [9], it was shown that for a fixed Ram, the lower the permeability (lower Da), the higher the

average Nusselt number at the hot wall. It then looks evident that different combinations of Raf and Da yields

different heat transfer results, even when Ram is the same. The increasing of the fluid Rayleigh number increases

natural convection intensity inside the enclosure. For a fixed Ram, a higher fluid Rayleigh number is associated

with a less permeable media (i.e. lower Darcy number).

Finally, Table 2 compares the behavior of the average Nusselt number for the two geometries investigated,

namely, the circular and square shapes. It is clearly seen in Table 2 that the overall values of average Nusselt

number, when circular cylinders are considered, are slightly lower than those obtained with the square obstacles.

Fluid boundary layers past a square obstacle will separate earlier at the sharp edges than in the case of smoothly

varying cylindrical surfaces. Then, larger wakes downstream square obstacles appear. The strength of the

recirculatory motion past square obstacles will agitate the fluid with a stronger intensity than in the case of circular

rods, where the flow tends to become attached to the solid surfaces. As a result of such a less streamlined flow, heat

transfer across the cavity will be higher for the square rod configuration, yielding a higher Nusselt number than

those calculated for the circular rod cases.
6. Conclusions

This work compared heat transfer across a square cavity partially filled with a fixed amount of a

conducting solid shaped with two different types of geometry. The two geometries herein considered

were rods with square and circular forms. The work consisted in numerically solve the momentum and

energy equations that resemble a conjugate heat transfer problem in both the solid and the void space.

Governing equations are discretized using the finite volume method.

The overall values of the average Nusselt number, when circular cylinders were considered, are

slightly lower than those obtained with the square obstacles. A possible explanation for such behavior is

that separation of the flow past the edges of square obstacles agitates the flow more intensively,

ultimately promoting heat mixing in the cavity. However, for the cases investigated here, this difference

is not significant and from an engineering standpoint both shapes play similar roles in the overall heat

transfer process.

Future work intends to analyze cavities filled with obstacles of different geometries and quantities in

order to study the influence of the medium morphology on the heat transfer process.
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