Turbulent natural convection in a porous square cavity computed with a macroscopic $\kappa-\varepsilon$ model

Edimilson J. Braga, Marcelo J.S. de Lemos *

Departamento de Energia—IEME, Instituto Tecnológico de Aeronáutica—ITA, 12228-900 São José dos Campos, SP, Brazil

Received 13 November 2003; received in revised form 14 July 2004
Available online 18 September 2004

Abstract

Detailed numerical computations for laminar and turbulent natural convection within a square cavity filled with a fluid saturated porous medium are presented. Heated vertical walls are maintained at constant but different temperatures, while horizontal surfaces are kept insulated. The macroscopic $\kappa-\varepsilon$ turbulence model with wall function is used to handle turbulent flows in porous media. In this work, the turbulence model is first switched off and the laminar branch of the solution is found when increasing the Rayleigh number, Ra_m. Computations covered the range $10 < Ra_m < 10^6$ and $10^{-7} < Da < 10^{-10}$ and made use of the finite volume method. Subsequently, the turbulence model is included and calculations start at high Ra_m, merging to the laminar branch for a reducing Ra_m and for Ra_m less than a certain critical Rayleigh number, Ra_{cr}. This convergence of results as Ra_m decreases can be seen as a characterization of the laminarization phenomenon. For Ra_m values less than around 10^4, both laminar and turbulent flow solutions merge, indicating that such critical value for Ra_m was reached. Results further indicate that when the parameters porosity, Pr, conductivity ratio between the fluid and the solid matrix and the Ra_m are kept fixed, the lower the Darcy number, the higher the average Nusselt number at the hot wall.

© 2004 Elsevier Ltd. All rights reserved.

Keywords: Turbulence modeling; Porous media; Heat transfer; Natural convection

1. Introduction

Thermal convection in porous media has been studied extensively in recent years. Underground spread of pollutants, grain storage, optimal design of furnaces and solar collectors, crystal growth in liquids, nuclear reactor safety and insulation, as well as food processing, are just some applications of this theme. Further, the analysis of buoyancy-driven flows in clear or porous cavities provides useful comparisons for evaluating the robustness and performance of numerical methods dealing with viscous flow calculations. The modeling of macroscopic transport for incompressible flows in porous media has been based on the volume-average methodology for either heat [1] or mass transfer [2–4]. If the flow fluctuates in time and has in addition to presenting spatial deviations, there are two possible methodologies to follow in order to obtain macroscopic equations: (a) application of time-average operator followed by volume-averaging [5–8], or (b) use of volume-averaging before applying time smoothing [9–11]. It has been shown that both sets of macroscopic mass transport equations are equivalent when examined under the recently established double decomposition concept [12–16]. This
methodology has been extended to heat transfer in porous media where both time fluctuations and spatial deviations were considered for velocity and temperature [17,18]. Studies on the treatment of interface conditions [19,20], on buoyant flows [21], mass transfer [22] and double diffusion [23], in addition to a general classification of models [24], have also been published.

Natural convection occurs in enclosures as a result of gradients in density which, in turn, is due to variations in temperature or mass concentration. Natural convection in an infinite horizontal layer of fluid, heated from below, has received extensive attention since the beginning of the 20th century when Bénard [25] observed hexagonal roll cells upon the onset of convection in molten spermaceti with a free upper surface. The work of Rayleigh [26] was the first to compute a critical value, \(Ra_c \), for the onset of convection. The accepted theoretical value of this dimensionless group is 1708 for infinite rigid upper and lower surfaces. The study of natural convection in enclosures still attracts the attention of researchers and a significant number of experimental and theoretical works have been carried out mainly from the 80s.
During the conference on Numerical Methods in Thermal Problems, which took place in Swansea, [27] proposed that buoyancy-driven flow in a square cavity would be a suitable vehicle for testing and validating computer codes. Following discussions at Swansea, contributions for the solution of the problem were invited. A total of 37 contributions from 30 groups in nine different countries were received. The compilation and discussion of the main contributions yielded the classical benchmark of [28].

The first to introduce a turbulence model in their calculations were [29]. They performed steady 2-D simulations for Ra up to 10^{16} and presented a complete set of results. Ref. [30] used the same turbulence model adopted by them for 2-D calculations up to $Ra = 10^{11}$.

In [31], 2-D calculations using various versions of the $\kappa-\varepsilon$ turbulence model were performed. These versions included the standard as well as the low-Reynolds number $\kappa-\varepsilon$ models.

In [32], 3-D calculations for laminar flow for Ra up to 10^{10} were presented. Their graphs revealed the 3-D character of the flow. Comparisons were made with 2-D simulations and differences were reported for the heat transfer correlation between Nu and Ra.

The paper of [33] reworked the problem for laminar and turbulent flows for a wide range of Ra. Turbulence was modeled with the standard $\kappa-\varepsilon$ closure and the effect of the assumed wall functions on heat transfer was investigated.

The monographs of [34] and [35] fully document natural convection in porous media.

The case of free convection in a rectangular cavity heated on a side and cooled at the opposing side is an important problem in thermal convection in porous media. The works of [36–42] have contributed with some important results to this problem.

The recent work of [43], concerned a numerical study of the steady free convection flow in rectangular and oblique cavities filled with homogeneous porous media using a nonlinear axis transformation. The Darcy momentum and energy equations are solved numerically using the (ADI) method.

Motivated by the foregoing work, this paper presents results for both laminar and turbulent flows in a square cavity totally filled with a porous material, heated from the left and cooled from the opposing side, T_C. The other two walls are kept insulated. The turbulence model here adopted is the macroscopic $\kappa-\varepsilon$ with wall function.

2. The problem under consideration

The problem considered is showed schematically in Fig. 1(a) and refers to a square cavity with side $L = 1\,\text{m}$ completely filled with porous medium. The cavity is isothermally heated from the left, T_H, and cooled from the opposing side, T_C. The other two walls are insulated. These boundary conditions are widely applied when solving buoyancy-driven cavity flows [25]. The porous medium is considered to be rigid and saturated by an incompressible fluid. The Ra_m is the dimensionless parameter used for porous media and it is defined as, $Ra_m = Ra_D a$, with $a_{eff} = k_{eff}/(\rho c_p)T$ and the particle diameter is given by $D_p = \sqrt[144]{K/(1-\phi)}$.

3. Governing equations

The equations used herein are derived in details in Refs. [12–16] and for this reason their derivation need not be repeated here. It is interesting to point out that the value of porosity, ϕ, in the governing equations to be shown below, is located inside the spatial operator (gradient). As such, no assumption is made on the constancy of ϕ over the domain of calculation. Pedras and de Lemos [13] points out that the only restriction to apply is the constancy of ϕ with time, otherwise, volume and time average operators do not commute.

Basically, for porous media analysis, a macroscopic form of the time-averaged equations is obtained by taking the volumetric mean of the entire equation set.
[12–16]. In that development, the medium was considered rigid and saturated by an incompressible fluid. Accordingly, for a general fluid property ϕ the intrinsic and volumetric averages are related through the porosity ϕ as,

$$\langle \phi \rangle^i = \frac{1}{\Delta V_f} \int_{\Delta V_i} \phi \, dV; \quad \langle \phi \rangle^\gamma = \phi \langle \phi \rangle^i; \quad \phi = \frac{\Delta V_f}{\Delta V}$$

(1)

where ΔV_f is the volume of the fluid contained in ΔV, the volume of a representative elementary volume. The property ϕ can then be defined as the sum of $\langle \phi \rangle^i$ and a term related to its spatial variation within the REV, $^i\phi$, as [3],

$$\phi = \langle \phi \rangle^i + ^i\phi$$

(2)

The macroscopic continuity equation is then given by,

$$\nabla \cdot \mathbf{u}_D = 0$$

(3)

where the Dupuit–Forchheimer relationship, $\mathbf{u}_D = \phi \langle \mathbf{u} \rangle^i$, has been used and $\langle \mathbf{u} \rangle^i$ identifies the intrinsic (liquid) average of the local velocity vector \mathbf{u}. The macroscopic time-mean Navier–Stokes (NS) equation for an incompressible fluid with constant properties is given as,

$$\rho \left[\frac{\partial \mathbf{u}_D}{\partial t} + \nabla \cdot (\mathbf{u}_D \mathbf{u}_D) \right] = -\nabla \left(\phi \langle \mathbf{u} \rangle^i + \mu \nabla^2 \mathbf{u}_D \right) + \nabla \cdot \left(-\rho \phi \mathbf{u} \nabla \langle \mathbf{u} \rangle^i \right)$$

$$- \rho \beta \phi \theta \left(\langle \mathbf{T} \rangle^i - T_{ref} \right) - \frac{\mu \phi}{K} \frac{\mathbf{u}_D + c_T \phi \mathbf{u} |\mathbf{u}_D| \mathbf{u}_D}{\sqrt{K}}$$

(4)

Before proceeding, a word about the dispersion mechanism seems timely. Bear [2] and Hsu and Cheng [1] have defined, among others, the dispersion mechanism for momentum and heat transport, respectively. Mathematically speaking, dispersion is a space correlation between deviation of a generic flow property and velocity deviation (see Pedras and de Lemos [12]). When the flow property is velocity, temperature, or mass concentration, one has mechanical, thermal or mass dispersion, respectively. Such mechanism is also present in laminar flow through porous media (low $Re_p = |\mathbf{u}_D|d/v_l$). Having defined an appropriate nomenclature, considerations about characteristics of the models here employed can be made.

In view of the above, it is interesting to point out that mechanical dispersion has been neglected in Eq. (4). The reason for assuming such hypothesis is based on the fact that this work in intended to model flows in highly permeable, high porosity media, for which the range of pore Reynolds number considered is given by $Re_p > 300$. As such, turbulent flow is assumed to exist within the medium and, under this condition, turbulent transfer (third term on the right of (4)) overwhelms mechanical dispersion (see [13]). For laminar flow with low Re_p, however, the greater importance of mechanical dispersion as a mechanism of momentum exchange is commonly accepted in the literature. On should point out though that thermal dispersion is here not neglected, as will be seen below.

Further, when treating turbulence with statistical tools, the correlation $-\rho \mathbf{u} \nabla \mathbf{u}$ appears after application of the time-average operator to the local instantaneous NS equation. Applying further the volume-average procedure to this correlation results in the term $-\rho \phi \mathbf{u} \nabla \langle \mathbf{u} \rangle^i \phi$. This term is here recalled the macroscopic Reynolds stress tensor (MRST). Further, a model for the (MRST) in analogy with the Boussinesq concept for clear fluid can be written as

$$-\rho \phi \mathbf{u} \nabla \langle \mathbf{u} \rangle^i \phi = \mu_{\text{disp}, \text{t}} \left(\mathbf{D}^\gamma - \frac{\rho \phi (\langle k \rangle^i) \mathbf{I}}{3} \right)$$

(5)

where

$$\mathbf{D}^\gamma = \frac{1}{2} \left[\nabla (\phi \langle \mathbf{u} \rangle^i) + [\nabla (\phi \langle \mathbf{u} \rangle^i)]^T \right]$$

(6)

is the macroscopic deformation rate tensor, $\langle k \rangle^i$ is the intrinsic average for k and $\mu_{\text{disp}, \text{t}}$ is the macroscopic turbulent viscosity. The macroscopic turbulent viscosity, $\mu_{\text{disp}, \text{t}}$, is modeled similarly to the case of clear fluid flow and a proposal for it was presented in [13] as,

$$\mu_{\text{disp}, \text{t}} = \rho c_T \left(\frac{\langle k \rangle^i}{\langle \mathbf{u} \rangle^i} \right)$$

(7)

In a similar way, applying both time and volumetric average to the microscopic energy equation, for either the fluid or the porous matrix, two equations arise. Assuming further the local thermal equilibrium hypothesis, which considers $\langle \mathbf{T} \rangle^i = \langle \mathbf{T} \rangle^1 = \langle \mathbf{T} \rangle^1$, and adding up these two equations, one has,

$$\rho c_{p_t} \nabla \cdot \left(\mathbf{u} \langle \mathbf{T} \rangle^i \right) = \rho c_{p_t} \nabla \cdot \left(\mathbf{u} \langle \mathbf{T} \rangle^1 + \langle \mathbf{u} \rangle^i \langle \mathbf{T} \rangle^1 \right)$$

$$+ \langle \mathbf{u} \rangle^i \langle \mathbf{T} \rangle^1 + \langle \mathbf{u} \rangle^1 \left(\frac{\partial \langle \mathbf{T} \rangle^1}{\partial t} + \langle \mathbf{u} \rangle^1 \nabla \cdot \mathbf{u}_D \langle \mathbf{T} \rangle^1 \right)$$

(8)

A modeled form of (8) has been given in detail in the work of [18] as,

$$\left\{ \rho c_{p_t} \phi + (\rho c_{p_t})_{(1 - \phi)} \left(\frac{\partial \langle \mathbf{T} \rangle^i}{\partial t} + \rho c_{p_t} \nabla \cdot \mathbf{u}_D \langle \mathbf{T} \rangle^1 \right) \right\}$$

$$\nabla \cdot \left(\mathbf{K}_{\text{eff}} \cdot \nabla \langle \mathbf{T} \rangle^1 \right)$$

(9)

where, \mathbf{K}_{eff} given by

$$\mathbf{K}_{\text{eff}} = [\phi k_i + (1 - \phi) k_s] \mathbf{I} + \mathbf{K}_{\text{tor}} + \mathbf{K}_{\text{disp}} + \mathbf{K}_{\text{disp,t}}$$

(10)

is the effective conductivity tensor. In order to be able to apply (9), it is necessary to determine the conductivity tensors in (10), i.e. $\mathbf{K}_{\text{tor}}, \mathbf{K}_{\text{disp}}$ and $\mathbf{K}_{\text{disp,t}}$. Following [7], this can be accomplished for the tortuosity and thermal dispersion conductivity tensors, \mathbf{K}_{tor} and \mathbf{K}_{disp}, by making use of a unit cell subjected to periodic boundary conditions for the flow and a linear temperature gradient imposed over the domain. The conductivity tensors are
then obtained directly from the microscopic results for the unit cell.

As mentioned earlier, here, thermal dispersion is not neglected. Kuwahara and Nakayama [7] presented, for an infinite medium formed by an array of square rods, the K_disp components in the longitudinal and transversal directions, $(K_\text{disp})_{XX}$ and $(K_\text{disp})_{YY}$, respectively. Their expressions read,

$$(K_\text{disp})_{XX} = \begin{cases} 0.022 \frac{\mu_b}{(1-\phi)^{1/2}} k_t, & Pe_D < 10 \\ 2.7 \frac{\mu_b}{(1-\phi)^{1/2}} k_t, & Pe_D > 10 \end{cases}$$

$$(K_\text{disp})_{YY} = \begin{cases} 0.022 \frac{\mu_b}{(1-\phi)^{1/2}} k_t, & Pe_D < 10 \\ 0.052(1-\phi)^{1/2} Pe^2 k_t, & Pe_D > 10 \end{cases}$$

(11)

where

$Pe_D = Pe(1-\phi)^{1/2}; \quad Pe = Re_P Pr; \quad Re_P = \frac{U_0 d}{v_T}$

(12)

and d is the pore diameter.

The turbulent heat flux and turbulent thermal dispersion terms, K_i and $K_\text{disp,t}$, which cannot be determined from such a microscopic calculation, are modeled here through the Eddy diffusivity concept, similarly to [8]. It should be noticed that these terms arise only if the flow is turbulent, whereas the tortuosity and the thermal dispersion terms exist for both laminar and turbulent flow regimes.

Starting out from the time averaged energy equation coupled with the microscopic modeling for the turbulent thermal stress tensor through the Eddy diffusivity concept, one can write, after volume averaging,

$$-(\rho c_T) \langle \nabla T \rangle^i = \langle \rho c_T \rangle \frac{v_T}{\sigma_T} \nabla \langle T \rangle^i$$

(13)

where the symbol v_T expresses the macroscopic Eddy viscosity, $\mu_T = \rho v_T$, given by (7) and σ_T is a constant. According to (13), the macroscopic heat flux due to turbulence is taken as the sum of the turbulent heat flux and the turbulent thermal dispersion found by [18]. In view of the arguments given above, the turbulent heat flux and turbulent thermal dispersion components of the conductivity tensor, K_i and $K_\text{disp,t}$, respectively, are expressed as

$$K_i + K_\text{disp,t} = \phi(\rho c_T) \frac{v_T}{\sigma_T} 1$$

(14)

In the equation set shown above, when the variable $\phi = 1$, the domain is considered as a clear medium. For any other value of ϕ, the domain is treated as a porous medium.

4. Turbulence model

Transport equations for $\langle k \rangle^i = \langle \mathbf{u} \cdot \mathbf{u} \rangle^i/2$ and $\langle \epsilon \rangle^i = \mu \langle \nabla \mathbf{u} : (\nabla \mathbf{u})^\prime \rangle^i/\rho$ in their so-called high Reynolds number form are fully documented in Pedras and de Lemos [12–16] making use of the double decomposition concept and extended in de Lemos and Braga [21] to incorporate buoyancy effects. Basically, for porous media analysis, a macroscopic form of the governing equations is here obtained by taking the volumetric average of the time averaged equations set.

As explained in [12], different paths in obtaining a k-equation have been proposed. Lee and Howell [9] and Antohe and Lage [10] developed a macroscopic equation for the turbulent kinetic energy formed as $k_m = \langle \mathbf{u}^2 \rangle/2$. De Lemos and co-workers [12–24] based their model on $\langle k \rangle = \langle \mathbf{u}^2 \rangle/2$. The relationship between these two quantities is [12]

$$\langle k \rangle = \langle \mathbf{u}^2 \rangle / 2 = \langle \mathbf{u}^2 \rangle / 2 + \langle \mathbf{u}^2 \rangle / 2$$

(15)

For that reason, transport equations for $k_m = \langle \mathbf{u}^2 \rangle / 2$ and $\langle k \rangle = \langle \mathbf{u}^2 \rangle / 2$ are not equal because, as seen, they represent two different quantities being transported [12]. In this work, macroscopic turbulent transport equations are given by [21]

$$\rho \left[\frac{\partial}{\partial t} \langle \phi \rangle^i + \nabla \cdot (\mathbf{u}_D \langle \phi \rangle^i) \right] = \nabla \cdot \left(\left[\mu + \frac{\mu_T}{\sigma_T} \right] \nabla \langle \phi \rangle^i \right) + P^i + G^i + G^i_{\beta} - \rho \phi \langle \phi \rangle^i$$

(16)

$$\rho \left[\frac{\partial}{\partial t} \langle \phi \rangle^i + \nabla \cdot (\mathbf{u}_D \langle \phi \rangle^i) \right] = \nabla \cdot \left(\left[\mu + \frac{\mu_T}{\sigma_T} \right] \nabla \langle \phi \rangle^i \right) + c_1 P^i \langle \phi \rangle^i \langle k \rangle^i$$

$$+ c_2 \frac{\langle \phi \rangle^i}{\langle k \rangle^i} G^i + c_1 G_{\beta} \frac{\langle \phi \rangle^i}{\langle k \rangle^i} - c_2 \rho \phi \langle \phi \rangle^i$$

(17)

where c_1,c_2,c_3 and c_4 are constants, $P^i = (-\rho \langle \nabla \mathbf{u} \rangle : \nabla \mathbf{u})$ is the production rate of $\langle k \rangle$ due to gradients of \mathbf{u}, $G^i = c_4 \rho \langle \phi \rangle^i \frac{\langle k \rangle^i}{\partial k}$ is the generation rate of the intrinsic average of k due to the action of the porous matrix and $G_{\beta} = \phi \frac{\beta}{\eta_0} \beta g \cdot \nabla \langle T \rangle^i$ is the generation rate of $\langle k \rangle$ due to the buoyant effects. Here, it is also important to emphasize that mechanical dispersion was not considered in the transport of $\langle k \rangle^i$ and $\langle \phi \rangle^i$, as was the case for the mean momentum equation (4). For highly porous and permeable media, for a fluid flowing with a high value of Re_p, turbulence interactions are expected to transport momentum and turbulent kinetic energy as a rate faster than that due to dispersion mechanisms.

Further, the constants used in Eqs. (7),(16) and (17) of the macroscopic k-ϵ model were the same given by Launder and Spalding [44] for clear medium ($\phi = 1$ and $K \rightarrow \infty$). They read,
For a porous medium, these constants may present different values but, as a first approximation, they were taken as equal to those in [44], as suggested by Lee and Howell [9].

Further, standard wall function has been employed for calculating the flow near to the walls, as discussed in [19]. The use of such simpler model is justified due to the final velocity values close to the interface will be a function not only of inertia and viscous effects in full Navier–Stokes equation, but also due to the Darcy and Forchheimer resistance terms. Therefore, eventual errors coming from inaccurate use of more appropriate boundary conditions will have little influence on the final value for velocity close to the wall. Thus, logarithm wall laws are simple to be incorporated when simulating flow over rigid surfaces and for that they have been modified to include surface roughness and to simulate flows over irregular surfaces at the bottom of rivers [48]. Detailed information on such numerical treatment can be found in [13–16].

5. Numerical method and solution procedure

The numerical method employed for discretizing the governing equations is the control-volume approach with a generalized grid. A hybrid scheme, upwind differencing scheme (UDS) and central differencing scheme (CDS), is used for interpolating the convection fluxes. The well-established SIMPLE algorithm [45] is followed for handling the pressure-velocity coupling. Individual algebraic equation sets were solved by the SIP procedure of [46]. In addition, concentration of nodal points closer to the walls reduces eventual errors due to numerical diffusion which, in turn, are further annihilated due to the hybrid scheme here adopted.

6. Results and discussion

In order to guarantee grid independent solutions, runs were performed in grids up to 110 × 110 control volumes, using stretched meshes for turbulent flow with $Ra_m = 10^6$. The percent difference of the averaged Nusselt number at the hot wall, compared with results obtained with the 80 × 80 grid, is 1.15%. Therefore, the 80 × 80 stretched mesh seems to be refined enough near to the walls to capture the thin boundary layers that appear along the vertical surfaces.

6.1. Laminar model solution

Runs for laminar model solution were performed with an 80 × 80 control volumes in a stretched grid like shown in Fig. 1(b). The present results were performed with $\phi = 0.8$ and the Prandtl number and the conductivity ratio between the solid and fluid phases are assumed to be a unit. The available literature shows that for the non-Darcy region, [47], the fluid flow and the heat transfer depend on the fluid Rayleigh number, Ra_f and the Darcy number, Da, when other parameters, e.g., (Porosity, Prandtl number, conductivity ratio between the fluid and solid matrix) are fixed. Thus, herein, porosity, Prandtl number and conductivity ratio were kept fixed. It is also important to emphasize that all runs were performed without the contribution of the thermal dispersion, K_{disp}. However, a few cases considering the effect of thermal dispersion on the Nusselt number were also computed in order to show its influence on the overall heat transport.

Table 1 shows some previous laminar numerical results for Ra_m ranging from 10 to 10^4. Table 2 shows the average Nusselt number for different Darcy numbers for Ra_m ranging from 10 to 10^4. It is clearly seen from the Table 2 that for a fixed Ra_m, the lower the permeability, the higher the average Nusselt number at the hot wall. It is evident that different combinations of Ra_f and Da yields different heat transfer results. The increasing of the fluid Rayleigh number increases the natural
convection inside the enclosure. Since the Ra_m is fixed, a higher fluid Rayleigh number is associated with a less permeable media (i.e. lower Darcy number). It's also clearly seen from Table 2 that the Nusselt numbers computed with the thermal dispersion are higher than those computed without it for $Da = 10^{-7}$. It seems evident that this additional mechanism increases heat transfer. Table 2 also shows that for higher values of Ra_m, the effect of the thermal dispersion on the Nusselt number are more pronounced. However, although not shown here, the computational cost due to the inclusion of this mechanism increases significantly. In comparison with results of Table 1, more accurate simulations were obtained for lower permeability media.

The local Nusselt number on the hot wall for the square cavity at $x = 0$ is defined as,

$$Nu = hL/k_{eq}, \quad Nu = \left(\frac{\partial(T)}{\partial x}\right)_{x=0} \frac{L}{T_H - T_C}$$

and the average Nusselt number is given by,

$$\overline{Nu} = \frac{1}{H} \int_0^H Nu \, dy$$

Fig. 2 shows streamlines and isotherms for a laminar model solution in a square cavity filled with porous medium for Ra_m ranging from 10^3 to 10^6. The cavity is heated on the left side and cooled from the opposing side. The other two walls are kept insulated.

For lower Rayleigh number values, $Ra_m \leq 10^3$, not shown here, the isotherms are almost parallel to the heated walls, indicating that the most part of heat transfer is by conduction mechanism, while the streamlines are a single vortex with its center in the center of the square cavity.

At $Ra_m = 10^3$, Fig. 2(b), the streamlines are an elliptic flattened vortex. In contrast with the clear cavity case the porous matrix makes the flow be more intense near the heated and cooled walls and damped in the center due to the presence of the porous matrix. Corresponding Isotherms are shown in Fig. 2(a). The enhancing of the natural convection begins to distort the isotherms. The vortex is generated due the horizontal temperature gradient across the section. This gradient, $\delta T/\delta y$, is negative everywhere, giving a clockwise vertical rotation.

Increasing Ra_m to 10^4, Fig. 2(d), the central vortex becomes rectangular and the effect of convection is now more pronounced in the isotherms, as can be seen in Fig. 2(c). The flow pattern comprises a primary cell of relatively high velocity, circulating around the entire cavity. Temperature gradients are stronger near the vertical walls, but decrease in the center.

For higher values of Rayleigh numbers, $Ra_m = 10^5$ and 10^6, the flow moves faster close to heated walls, Fig. 2(f) and (h), and the isotherms tends to stratification, Fig. 2(e) and (g), respectively.

Table 2

<table>
<thead>
<tr>
<th>Da</th>
<th>k_{eq} given by (11)</th>
<th>Ra_m</th>
<th>10</th>
<th>10^2</th>
<th>10^3</th>
<th>10^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-7}</td>
<td>$k_{eq} = 0$</td>
<td>1.0907</td>
<td>3.0866</td>
<td>12.9641</td>
<td>41.7693</td>
<td></td>
</tr>
<tr>
<td>10^{-7}</td>
<td>$k_{eq} = 0$</td>
<td>1.0902</td>
<td>3.0831</td>
<td>12.8930</td>
<td>38.6494</td>
<td></td>
</tr>
<tr>
<td>10^{-8}</td>
<td>$k_{eq} = 0$</td>
<td>1.0908</td>
<td>3.0979</td>
<td>13.2751</td>
<td>43.5799</td>
<td></td>
</tr>
<tr>
<td>10^{-9}</td>
<td>$k_{eq} = 0$</td>
<td>1.0910</td>
<td>3.0985</td>
<td>13.3848</td>
<td>46.1659</td>
<td></td>
</tr>
<tr>
<td>10^{-10}</td>
<td>$k_{eq} = 0$</td>
<td>1.0912</td>
<td>3.1016</td>
<td>13.4289</td>
<td>47.2653</td>
<td></td>
</tr>
</tbody>
</table>

6.2. Turbulent model solution

It is important to emphasize that the main objective of this work is not to simulate the transition mechanism from laminar regime to fully turbulent flow, which involves modeling of complex physical processes and hydrodynamic instabilities. Here, the aim of this work is to establish a Ra_{ct} below which both turbulent and laminar models did not differ substantially as far as predictions of overall Nu are of concern. Therefore, a strategy for determining the range of validity of a laminar flow solution was to simulate the laminarization of the flow when the Raleigh number is reduced.

For clear flows, when Ra_l is varied, the literature often refers to laminar and turbulent "branches" of solutions as Ra_l passes a critical value. When a turbulence model is included, the turbulent solution can deviate from the laminar branch for $Ra_l > Ra_{ct}$ and follows its turbulent branch. According to [31], the deviation of the averaged wall-heat transfer between laminar and turbulent fields depends on the turbulence model used.

When the standard $\kappa-\varepsilon$ model is used, the laminar solution is not a solution of the equation system, because it does not satisfy the boundary condition, namely wall function, for the kinetic energy at the first inner grid point close to the wall. Below a critical Ra_l number, the standard $\kappa-\varepsilon$ model gives a turbulent viscosity close to zero everywhere. This reduction of turbulent transfer can be interpreted as an indication of the laminarization process. However, above this critical value, the turbulent viscosity suddenly increases and a turbulent solution is obtained.
Fig. 2. Isotherms and streamlines for laminar model solution for a square cavity filled with porous material with $\phi = 0.8$, $Da = 10^{-7}$ and $K_{disp} = 0$.
Fig. 3. Isotherms and streamlines for turbulent model solution for a square cavity filled with porous material with $\phi = 0.8$, $Da = 10^{-7}$ and $K_{disp} = 0$.
Table 3
Comparison between laminar and turbulent model solutions for the average Nusselt number at the hot wall for $Da = 10^{-7}$ and 10^{-8} and Ra_{m} ranging from 10^{3} to 10^{6}

<table>
<thead>
<tr>
<th>Model solution</th>
<th>Ra_{m}</th>
<th>10^{3}</th>
<th>10^{4}</th>
<th>10^{5}</th>
<th>10^{6}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Da = 10^{-7}$ with K_{disp} given by (11)</td>
<td>Laminar</td>
<td>1.0907</td>
<td>3.0866</td>
<td>12.9641</td>
<td>41.7693</td>
</tr>
<tr>
<td></td>
<td>Turbulent</td>
<td>1.0910</td>
<td>3.0896</td>
<td>13.0652</td>
<td>43.2809</td>
</tr>
<tr>
<td>$Da = 10^{-7}$ with $K_{disp} = 0$</td>
<td>Laminar</td>
<td>1.0902</td>
<td>3.0831</td>
<td>12.8930</td>
<td>38.6494</td>
</tr>
<tr>
<td></td>
<td>Turbulent</td>
<td>1.0907</td>
<td>3.0860</td>
<td>12.9956</td>
<td>40.3077</td>
</tr>
<tr>
<td>$Da = 10^{-8}$ with $K_{disp} = 0$</td>
<td>Laminar</td>
<td>1.0908</td>
<td>3.0979</td>
<td>13.2751</td>
<td>43.5799</td>
</tr>
<tr>
<td></td>
<td>Turbulent</td>
<td>1.0910</td>
<td>3.1006</td>
<td>13.3525</td>
<td>44.7605</td>
</tr>
</tbody>
</table>

With this ideas in mind, this part of the work tries to find for flow in porous media, as done in the literature for the clear fluid case, like in [31] and [33], a critical Rayleigh, Ra_{cr}, for which simulations with the turbulence model deviates from those considering laminar flow. In order to achieve this goal, the turbulence model is first “switched off” and the laminar branch of the solution is found when increasing the Rayleigh number, Ra_{m}. Subsequently, the turbulence model is included so that the solution merges to the laminar branch for a reducing Ra_{m} and for $Ra_{m} < Ra_{cr}$. This convergence of results as Ra_{m} decreases can be seen to characterize the so-called laminarization phenomenon.

Calculations for turbulent model solution were performed with the same grid used for the laminar model solution and the parameters (porosity, Prandtl number and conductivity ratio between the fluid and the solid matrix) are fixed.

Fig. 3 shows the isotherms and streamlines for turbulent model solution for Ra_{m} ranging from 10^{3} to 10^{6}. For $Ra_{m} < 10^{3}$, not shown here, the solution with the turbulence model gives nearly the same values as those obtained with laminar flow computations. Even for Ra_{m} up to 10^{6} the flow patterns resemble those from the laminar model solution, but the values of the streamlines and the average Nusselt numbers at the hot wall are significantly increased.

Table 3 shows the average Nusselt number at the hot wall for the two types of regime, namely laminar and turbulent for two distinct Darcy numbers. Table 3 shows that the turbulent solution deviates from the laminar one for Ra_{m} greater than around 10^{4}. Consequently, the calculations herein suggest that a critical value for Rayleigh is of the order of 10^{4} and from that value on simulations considering a turbulence model are higher than their laminar counterpart.

Fig. 4 shows the behavior of the average Nusselt number versus the Rayleigh number for the two models here considered, namely the laminar and the turbulence models for $Da = 10^{-7}$ and $Da = 10^{-8}$ illustrating the two regions mentioned above. It is clearly seen from Fig. 4 that Ra_{cr} is not affected due to small variations on the Darcy number.

In the first region for $Ra_{m} < Ra_{cr} \sim 10^{4}$, both laminar and turbulent flow simulations give nearly the same results. After this point, Nusselt numbers calculated with a full turbulence model give higher values for Nu.

7. Conclusion

Computations for laminar and turbulent flows with the macroscopic κ–ϵ model with a wall function for natural convection in a square cavity totally filled with porous material were performed. The cavity was heated from the left and cooled from the opposing side. The numerical values yielded generally satisfactory agree-
ment with similar data available in the literature. This agreement was also found when comparing average Nusselt numbers along the hot wall.

In general, when fluid and medium properties (Prandtl number, porosity and conductivity ratio between the fluid and the solid matrix) are kept fixed and Ra_m is constant, the lower the Darcy number (or media permeability), the higher the average Nusselt number at the hot wall. The increasing of the fluid Rayleigh number increases the natural convection inside the enclosure. Since the Ra_m is fixed, a higher fluid Rayleigh number is associated with a less permeable media (i.e. lower Darcy number). In the end, for Ra_m values greater than around 10^4, both laminar and turbulent flow solutions deviate from each other, indicating that such critical value for Ra_m was reached. Accordingly, in order to observe that, the turbulence model was first switched off and the laminar branch of the solution was found when increasing the Rayleigh number, Ra_m. Subsequently, the turbulence model was included so that the solution merged to the laminar branch for $Ra_m < Ra_{cr}$. This convergence of results as Ra_m decreases can be seen as an estimate of the so-called laminarization phenomenon.

Ultimately, the inclusion of thermal dispersion increases the Nusselt number on the hot wall by a fair amount for higher Ra_m, since it represents an additional mechanism of mixing. However, the inclusion of this effect also significantly reduces convergence rates and associated computational cost. Further, Ra_{cr} is not affected due to the inclusion of the thermal dispersion mechanism, K_{disp}, or due to small variations on the Darcy number.

Acknowledgments

The authors are thankful to CNPq and FAPESP, Brazil, for their invaluable financial support during the course of this research.

References

[26] Lord J.W. Strutt Rayleigh, On convection currents in a horizontal layer of fluid when the higher temperature is on the underside, Philos. Mag. 32 (ser. 6) (1926) 833–844.