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This work investigates the influence of porosity and thermal conductivity ratio on the Nusselt number of a cavity
filed with a fluid saturated porous substrate. The flow regime considered intra-pore turbulence and a
macroscopic k-ε model was applied. Heat transfer across the cavity assumed the hypothesis of thermal
equilibrium between the solid and the fluid phases. Transport equations were discretized using the control-
volume method and the system of algebraic equations was relaxed via the SIMPLE algorithm. Results showed
that when using the one energy equation model under the turbulent regime, simulated with a High Reynolds
turbulence model, the cavity Nusselt number is reduced for higher values of the ratio ks/kf as well as when the
material porosity is increased. In both cases, conduction thorough the solid material becomes of a greater
importance when compared with the overall transport that includes both convection and conduction
mechanisms across the medium.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Thermal convection in porous media and the parameters that affect
heat transfer across a heterogeneous medium have been studied
extensively in recent years. There are several applications in industry
for this type of technology. Examples are studies on grain storage,
optimization of solar collectors design, safety of nuclear reactors and
design of porous burners for industrial furnaces, to mention a few.
Traditionally, modeling of macroscopic transport for incompressible
flows in porous media has been based on the volume-average meth-
odology [1–4]. Additionally, if the flow fluctuates in time, the literature
presents a number of time- and volume-averaging techniques that
follow distinct sequences when applying both averaging operators
[5–11]. Recently, a concept named double decomposition [12] showed
that the sets of macroscopic mass transport equations are equivalent,
regardless of the order of application of the averaging operators.

When buoyancy forces are of concern, natural convection occurs in
enclosures as a result of gradients in densities which, in turn, are due
to variations in temperature or mass concentration within themedium.

For clear cavities, the first turbulence model introduced for
calculating buoyant flows was proposed by Markatos and Pericleous
[13]. They performed steady 2-D simulations for Ra up to 1016 and
presented a complete set of results. Ozoe et al. [14], in the light of the
same model adopted by [13], applied it to 2D calculations up to Ra=
1011. Henkes et al. [15] compared two different turbulence models for
2D calculations, namely the standard High Reynolds k-ε closure as
ghts reserved.
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well as the Low–Reynolds number form of the model. Further, Fusegi
et al. [16] presented 3D calculations for laminar flow for Ra up to 1010

in a cube. The results revealed that the behaviors of the flow and
comparisons were made with 2D simulations. The differences were
reported considering heat transfer correlation between Nu and Ra for
2D and 3D cases. Later, Barakos et al. [17] also studied the problem of
natural convection flow in a clean square cavity. The k-ε model has
been used for modeling turbulence with and without wall functions.

For cavities fitted with a porous material, the problem of free
convection in enclosures with distinct temperatures applied on each
side of the cavity has been shown to represent a number of engineering
systems of practical relevance. The monographs of Nield and Bejan [18]
and Ingham and Pop [19] fully document natural convection in porous
media. In addition, several articles published in the literature made
important contributions to the understanding of this problem [20–26].
Baytas and Pop [27] considered a numerical study of steady free
convection flow in rectangular and oblique cavities, filled with homo-
geneous porous media using a nonlinear axis transformation. The
Darcy momentum and energy equations were numerically solved
using the (ADI) method.

In the work of Braga and de Lemos (2004) [28], an approximate
critical Rayleigh was proposed comparing the behavior of Laminar and
High Reynolds turbulence model solutions. The geometry there
investigated was a square cavity totally filled with a porous material,
which was heated from the left and cooled from the opposing side.
Also worth to mention is that the work in [28] was based on the local
thermal equilibrium (LTE) hypothesis, which considers one unique
temperature for both the fluid and the solid porous material. Other
cases not involving gravity driven motion [29] have also been analyzed
with the laminar version of the LTE model detailed in [12]. Further, in
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Nomenclature

Latin characters
cF Forchheimer coefficient
c′s Non-dimensional turbulence model constants
cp Specific heat
D Deformation rate tensor, D=[∇u+(∇u)T]/2
Da Darcy number, Da ¼ K

H2

D Particle diameter, D
g Gravity acceleration vector
Gi Generation rate of 〈k〉i due to the action of the porous

matrix
Gβ
i Generation rate of 〈k〉i due to buoyant effects

h Heat transfer coefficient
H Cavity height
I Unit tensor
K Permeability, K ¼ D2ϕ3

144 1−ϕð Þ2
k Turbulent kinetic energy per unit mass, k ¼ u′ � u′=2
kf Fluid thermal conductivity
ks Solid thermal conductivity
Kdisp Conductivity tensor due to thermal dispersion
Kdisp,t Conductivity tensor due to turbulent thermal dispersion
Kt Conductivity tensor due to turbulent heat flux
Ktor Conductivity tensor due to tortuosity
L Cavity width
Nu Nusselt number, Nu ¼ hL

�
keff

Pi Production rate of 〈k〉i due to gradients of uD

Pr Prandtl number
Raf Macroscopic Fluid Rayleigh number, Raf ¼ gβϕH

3ΔT
v f αeff

Ram Darcy–Rayleigh number, Ram=Raf ⋅Da= gβϕHΔTK
ν f αeff

Racr Critical Rayleigh number
ReD Reynolds number based on the particle diameter, ReD ¼

ρ uDj jD
μ f

T Temperature
u Microscopic velocity
uD Darcy or superficial velocity (volume average of u)

Greek characters
α Thermal diffusivity
β Thermal expansion coefficient
ΔV Representative elementary volume
ΔVf Fluid volume inside ΔV
ε ε ¼ μ∇u′ : ∇u′ð ÞT=ρ, Dissipation rate of k
μ Dynamic viscosity
μt Microscopic turbulent viscosity
μtϕ Macroscopic turbulent viscosity
ν Kinematic viscosity
ρ Density
σ′s Non-dimensional constants
ϕ ϕ ¼ ΔV f

�
ΔV , Porosity

Special characters
φ General variable
φ Time average
φ′ Time fluctuation
〈φ〉i Intrinsic average
〈φ〉v Volume average
iφ Spatial deviation
|φ| Absolute value (Abs)
φ General vector variable
φeff Effective value of φ, φeff=ϕφf+(1−ϕ)φs

φs,f solid/fluid
φH,C Hot/cold
φϕ Macroscopic value
()T Transpose
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[28] it was also shown that lowDarcynumbers impact in higher average
Nusselt numbers at the hot wall. However, in reference [28] simulations
were limited to a single solid-to-fluid thermal conductivity ratio,
ks/kf=1, and a single porosity value, ϕ=0.8.

Motivated by the foregoing work, the contribution of this work is to
extend the findings in [28] varying now the ratio ks/kf and the porosity
ϕ. The turbulence model here adopted is the macroscopic k-ε with
wall function in addition to the Low Reynolds number version of the
model. The findings herein broaden the simulations presented earlier
in [28] since a greater number of heterogonous systems are now
investigated, leading to the analysis and optimization of a wider range
of practical engineering systems.

2. The problem under consideration

The problem considered is showed schematically in Fig. 1a and
refers to a square cavity with sides L=H=1m completely filled with
a porous medium. The cavity is isothermally heated from the left, TH,
and cooled from the opposing side, TC. The other twowalls are thermally
insulated. These boundary conditions are widely applied when solving
buoyancy-driven cavity flows. The porous medium is considered to be
rigid and saturated by an incompressible fluid. The modified Rayleigh
number, Ram, is a dimensionless parameter used in porous media
TH TC

dT/dy=0

dT/dy=0
g

y
x

H

L

a

b

Fig. 1. a) Geometry under consideration; b) 80 × 80 stretched grid.



Table 2
Comparison of laminar results for averageNusselt at hotwall, Nuw, with Ram varying from
10 until 104, Da=10−7, ϕ=0.8 and ks/kf=1.

Ram

10 102 103 104

Walker and Homsy [20] – 3.097 12.96 51.0
Bejan [21] – 4.2 15.8 50.8
Beckermann et al. [23] – 3.113 – 48.9
Gross et al. [24] – 3.141 13.448 42.583
Manole and Lage [25] – 3.118 13.637 48.117
Moya et al. [26] 1.065 2.801 – –

Baytas and Pop [27] 1.079 3.16 14.06 48.33
Braga and de Lemos [28] 1.090 3.086 12.931 38.971
Present results 1.087 3.093 13.041 39.288
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analysis and it is defined as Ram = RafDa, where Da = K/H2, αeff ¼
keff
�

ρ cpð Þ f . D is the particle diameter used to calculate the permeability,

K, and is here given by D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
144K 1−ϕð Þ2

ϕ3

r
.

3. Governing equations

For turbulent buoyant flows, macroscopic governing equations are
obtained by taking both volumetric and time averaging of the entire
equation set. The final forms of the equations considered here are
given in detail in [12] and for this reason their derivation need not be
repeated. They read:

Continuity:

∇ � uD ¼ 0 ð1Þ

Momentum:

ρ
∂uD

∂t þ∇ � uDuD

ϕ

� �� �
¼ −∇ ϕ ph ii

� 	
þ μ∇2uD þ∇ � −ρϕ u′u′

D Ei� �

−ρβϕgϕ T

 �i−Tref

� 	
− μφ

K
uD þ cFϕρ juDjuDffiffiffiffi

K
p

� �
ð2Þ

Turbulent kinetic energy:

ρ
∂
∂t ϕ kh ii
� 	

þ∇ � uD kh ii
� 	� �

¼ ∇ � μ þ
μtϕ

σk

� �
∇ ϕ kh ii
� 	� �

þ Pi þ Gi

þ Gi
β−ρϕ εh ii ð3Þ

Dissipation rate of turbulence kinetic energy:

ρ
∂
∂t ϕ εh ii
� 	

þ∇ � uD εh ii
� 	� �

¼ ∇ � μ þ
μ tϕ

σε

� �
∇ ϕ εh ii
� 	� �

þ c1P
i εh ii
kh ii

þc2
εh ii
kh ii G

i þ c1c3G
i
β

εh ii
kh ii −c2 f 2ρϕ

εh ii2
kh ii
ð4Þ

where the Dupuit–Forchheimer relationship, uD ¼ ϕ uh ii, has been used
and uh ii identifies the intrinsic (liquid) average of the local velocity
vector u, 〈k〉i is the intrinsic average for k, 〈ε〉i is the intrinsic dissipation
rate of k, K is the medium permeability, Gi ¼ ckρϕ kh ii juDj=

ffiffiffiffi
K

p
is the

generation rate of 〈k〉i due to the action of the porous matrix, Gi
β ¼ ϕ

μtϕ
σ t

βk
ϕg �∇ T


 �i is the generation rate of 〈k〉i due to buoyant effects, βϕ ¼
ρβ T−Trefð Þh iv
ρϕ Th ii−Trefð Þ is the macroscopic thermal expansion coefficient and βk

ϕ ¼
β u0T ′

 �v
ϕ u0T ′

f


 �i is the macroscopic thermal coefficient appearing in the Gβ
i

term. Here, for simplicity, we assume βϕ
k =βϕ=β (see [12] for details).

Further, Pi ¼ −ρ u′u′
D Ei

: ∇uD is the production rate of 〈k〉i due to
Table 1
Damping functions and constants for High and Low Reynolds turbulence models.

High Reynolds model
proposed by Launder
and Spalding [30]

Low Reynolds model proposed by Abe et al. [31]

fμ 1.0
1− exp − νεð Þ0:25y

14ν

h in o2
1þ 5

k2=νεð Þ0:75 exp − k2=νεð Þ
200

� �2
" #( )

f2 1.0
1− exp − νεð Þ0:25y

3:1ν

h in o2
1−0:3 exp − k2=νεð Þ

6:5

� �2
" #( )

σk 1.0 1.4
σε 1.33 1.3
c1 1.44 1.5
c2 1.92 1.9
gradients of uD , the c's are constants and f2 is a damping function to
be commented upon later. The term −ρϕ u′u′

D Ei
is known as the

macroscopic Reynolds stress tensor (MRST) and is given by:

−ρϕ u′u′
D Ei ¼ μtϕ

2 D

 �v−2

3
ϕρ kh iiI ð5Þ

where

D

 �v ¼ 1

2
∇ ϕ uh ii
� 	

þ ∇ ϕ uh ii
� 	h iTh i

ð6Þ

is the macroscopic deformation rate tensor. The macroscopic turbulent
viscosity μ tϕ

is modeled as,

μ tϕ
¼ ρ cμ f μ

kh ii2
εh ii ð7Þ

where cμ is a constant and fμ is another damping function to be
presented below.

In a similar way, applying both time and volumetric average to the
microscopic energy equation and invoking the Local Thermal Equilibrium
Hypothesis, which considers as mentioned T f


 �i ¼ Ts

 �i ¼ T


 �i
, a

modeled form for the macroscopic energy equation reads (see [12]),

ρcp
� 	

f
ϕþ ρcp

� 	
s
1−ϕð Þ

� 
 ∂ T

 �i
∂t þ ρcp

� 	
f
∇ � uD T


 �i� 	
¼ ∇ � Keff �∇ T


 �in o
ð8Þ

where, Keff, given by:

Keff ¼ ϕkf þ 1−ϕð Þks
h i

Iþ Ktor þ Kt þ Kdisp þ Kdisp;t ð9Þ

is the effective conductivity tensor. In order to be able to apply Eq. (8), it is
necessary to determine the conductivity tensors in Eq. (9), i.e.Ktor,Kt,Kdisp

and Kdisp,t. The turbulent heat flux and turbulent thermal dispersion
terms, Kt and Kdisp,t are modeled such that,

−ϕ ρcp
� 	

f
u′ T ′
D Ei ¼ ϕ ρcp

� 	
f

νtϕ

Prt
∇ T

 �i ¼ Kt þ Kdisp;t

� 	
�∇ T

 �i ð10Þ
Table 3
Effect of simulation model on average Nusselt at hot wall, Nuw, with Da=10−7, ϕ=0.8,
and ks/kf=1.

Ram

103 104 105 106

Braga and de Lemos [28] (HR) 13.032 40.614 101.647 237.546
High Re turbulence model 13.271 41.792 101.503 234.930
Low Re turbulence model, yW+=0.767 13.132 40.602 96.918 –

Laminar model 13.041 39.288 88.238 172.491
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where the symbolνtϕ
expresses themacroscopic kinematic eddy viscosity

such that μtϕ
¼ ρ f νtϕ

and Prt is a constant known as turbulent Prandtl
number, which is often represented in the literature by σt. A further
simplification is that, under the conditions here studied, Ktor and Kdisp

are negligible when compared to Kt Kt and Kdisp [28].
3.1. Wall treatment and boundary conditions

In this work, two forms of the k-ε model are employed, namely the
High Reynolds (Launder and Spalding [30]) and Low Reynolds number
(Abe et al. [31]) turbulence models. The constants and formulae used
as damping functions are shown in Table 1. Boundary conditions are
given by:

On the solid walls (Low Reynolds turbulence model):

u ¼ 0; k ¼ 0; ε ¼ ν
∂2k
∂y2

ð11Þ
a

b

Fig. 2. Average Nusselt at hot wallNuw forϕ=0.8,D=1.06×10−3m,Da=10−7 and 80×80 st
turbulence model, varying ks/kf.
On the solid walls (High Reynolds turbulence model):

u
uτ

¼ 1
κ

ln yþE
� 	

; k ¼ u2
τ

c1=2μ

; ε ¼ c3=4μ k3=2w

κyw
; qw ¼

ρcp
� 	

f
c1=4μ k1=2w T−Tw

� �
Prt
κ

ln yþw
� 	

þ cQ Prð Þ
� �

ð12Þ

with, uτ ¼ τw
ρ

� 	1=2
; yþw ¼ ywuτ

ν ; cQ ¼ 12:5Pr2=3 þ 2:12 ln Prð Þ−5:3 for
PrN0:5 where, Pr and Prt are, as mentioned, the Prandtl and turbulent
Prandtl numbers, respectively, qw is the wall heat flux, uτ is the wall-
friction velocity, yw is the non-dimensional coordinate normal to wall,
K is the von Kármán constant, and E is a constant that depends on the
roughness of the wall.

4. Numerical method and solution procedure

The numerical method employed for discretizing the governing
equations is the control-volume approach. Hybrid schemes, upwind
retched grid: a) Laminar andHigh Reynolds turbulencemodels, ks/kf=1, b) High Reynolds
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differencing scheme (UDS) and central differencing scheme (CDS), are
used for interpolating the convection fluxes. The well-established
SIMPLE algorithm [32] is applied for handling the pressure–velocity
coupling. Algebraic equation sets for each variable were solved by the
SIP procedure of [33]. In addition, the concentration of nodal points
close to the walls aims at capturing the boundary layers close to the
solid surfaces.

5. Results and discussion

To guarantee a grid independent solution, runs were performed using
stretched grids with 60 × 60, 80 × 80, 100 × 100 control volumes and
Ram=105. In these three cases, the average Nusselt number at the hot
wall showed that the grid 80 × 80 is refined enough to capture the
boundary layers at vertical surfaces, since the difference in the results
was less than 2% when compared with similar simulations obtained
a

b

Fig. 3. Effects of porosity on average Nusselt at hot wall, Nuw, using the H
with a finer grid. For example, for Ram=105 and for a grid with 80×80
nodes (Fig. 1b), the average Nusselt at hot wall was calculated as
101.503, whereas for a mesh of size 100×100, the computed value was
103.38. As such, a grid of size 80×80was chosen for all simulations herein.

Further, the local Nusselt number on the hot wall for the square
cavity at x=0 is defined as,

Nu ¼ hL=keff∴Nu ¼ qW
keff

 !
x¼0

L
TH−TC

ð13Þ

and the average Nusselt number is given by,

Nuw ¼ 1
H

ZH
0

Nudy: ð14Þ
R turbulence model, D=1.06 × 10−3m: a) ks/kf=1, b) ks/kf=10.
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6. Laminar model solution

In order to calibrate the solution, runs were performed using the
stretched grid shown in Fig. 1b. Results are presented shown in
Table 2 and compared with the literature for φ=0.8 and Da=10−7.
In all results, the Prandtl Number, thermal conductivity ratio between
solid and fluid phases, fluid density and specific heat considered were
taken as unity. As one can see in Table 2, the present results agree
well with those reported in the literature.

7. Turbulent model solution

7.1. High Reynolds turbulence model

As Braga and de Lemos [28] pointed out, it is important to emphasize
that the main objective of this work is not to simulate the transition
mechanism from laminar regime to fully turbulent flow, but rather
identify the ranges of validity of each model. Here, a 80×80 stretched
a

b

Fig. 4. Overall heat flux along hot wall using the HR turbulence mo
grid has been used and the results are compared with those in [28] in
Table 3 for Ram ranging from 10 to 106. Table 3 also presents results
using the Laminar model. As can be seen in Table 3 and Fig. 2a, the
critical Rayleigh number, Racr, is assumed to be the value when the
two solutions deviate from each other. Here, the computed Racr also
agrees with that proposed in Braga and de Lemos [28] as Racr = 104

for ks/kf=1.

7.2. Low Reynolds turbulence model

It is known that Low Reynolds turbulence models make use of
damping functions and require that the first grid node close to the
wall corresponds to a non-dimensional wall distance of about yw+≈ 1.
Going back to Table 3, one can note that for Ram up to 104, calculated
Nusselt are similar, regardless of the model used, namely HR, LR or
Laminar models. After such value, here considered as a critical value,
Racr, the role of the model used becomes important when obtaining
Nuw.
del, D=1.06× 10−3m, Ram=105: a) ks/kf=1, b) ks/kf=10.
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8. Effect of thermal conductivity ratio ks/kf

The ratio between the solid and fluid thermal conductivity plays an
important role in the study of energy transport across saturated porous
media. To the best of the authors' knowledge, in all published materials
the ratio ks/kf has been set to unit. However, for real engineering
problems, such ratio may attain higher values and, for that, a study for
obtaining Nuw with a varying ratio ks/kf is here included.

Fig. 2b shows values for Nuw when ks/kf is varied from 1 to 20 for
a range for Ram covering 10 to 106 and using the High Reynolds
turbulence model. As the ks/kf increases, the average Nusselt decreases.
As conduction mechanism through the solid material becomes of a
higher importance, the relative contribution of the transport due to
convective currents is reduced, leading to reduction on the numerical
value Nuw. In the limiting case, when ks/kf → ∞, the cavity Nusselt
number would tend to attain unity reflecting the fact that conduction
heat transfer, in such limiting case, would be the dominant mechanism
of heat transport across the cavity.

9. Effect of porosity ϕ

Porosity is another important parameter to be consideredwhen heat
transport across the cavity is investigated. For a cavity as in Fig. 1a, Nuw
represents the ratio between the sum of convection and conduction
transport mechanisms over conduction transport alone. Therefore, for
a purely conductive heat transfer process across the cavity, Nuw would
attain unity, as defined by Eqs. (13) and (14).

Fig. 3a indicates that as porosity decreases, Nuw increases and
differences became higher for higher values of Ram. All runs in Fig. 3
were performed using the High Reynolds turbulence model, the
80×80 stretched grid in Fig. 1b and ks/kf=1. The same effect also occurs
for ks/kf=10(Fig. 3b). One explanation for this behavior is that although
the convective effects increase as the porosity increases, on the overall,
including the conduction through the solid, the total heat transfer across
the cavity is reduced, which, in turn, reduces Nuw (see the definition of
Nuw by inspecting Eqs. (13) and (14)). Also, for the same value for Ram,
comparing Fig. 3a and b shows that Nuw is reduced as ks/kf increases, a
result that is coherent with those shown in Fig. 2b where, for a larger
solid-to-fluid thermal conductivity ratio, the relative importance of
convective heat transport across the cavity is reduced, reducing then
Nuw.

Finally, Fig. 4 shows that indeed a higher porosity implies a lower
overall wall heat flux qw along the hot wall at x=0, which, in light of
the definition of Nuw by Eqs. (13) and (14), explains why the Nusselt
number is reduced when ϕ increases. In spite of having more void
space for the fluid to flow, the enhancement of the overall heat
transport across the cavity does not occur as ϕ increases.

The reduction of Nuw when ϕ increases can be better understood by
inspecting again Fig. 4a that is plotted for ks/kf = 1. In this case, the
effective conductivity, which is given by keff = ϕ kf + (1 − ϕ)ks or
keff=kf[ϕ+(1−ϕ)(ks/kf)], will always give keff/kf for ks/kf=1 regardless
of the value ofϕ. Therefore, the reduction on qw asϕ increases implies in
a reduction of Nuw by means of its definition (Eqs. (13) and (14)). A
similar reasoning applies when examining Fig. 4b for ks/kf=10.

10. Conclusion

Computations for laminar and turbulent flowswith themacroscopic
k-ε model with wall function for natural convection in a square cavity
fully filled with porous medium were performed. Results indicate that
when using the one energy equationmodel under the turbulent regime
simulated with a High Reynolds turbulence model, the cavity Nusselt
number is reduced for higher values of the ratio ks/kf as well as when
the material porosity in increased. In both cases, conduction thorough
the solid material becomes of a greater importance when compared
with the overall transport that includes also convective heat transport
due to fluid motion. The work herein might benefit the solution of
industrial problems of practical relevance.
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