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A total of four major classes of models are identified and a general discussion on their

main characteristics is carried out. Proposed equations for turbulence kinetic energy

following time-space and space-time integration sequences are derived and similar terms
are compared. Treatment of the drag coefficient and closure of the interfacial surface

integrals are discussed[DOI: 10.1115/1.1413243

Introduction the flow equations were carried ofRedras and de Lem¢&8]).
Calculations were needed for adjusting the model and considered

On the bas_|s_of the pore _Reynplds number, R_the ||tergture either the high Ré-€ closure(Rocamore and de Lem¢$29]) as
recognizes distinct flow regimes in porous media spanning from

. - well as the Low Reynolds version of {Pedras and de Lemos
creeping flow (Rg=1) to fully turbulent regime (Re>300). 28]). Full documentation of the modeling steps is detailed in de

The mathematical treatment for high Reynolds flow has given ri &mos and Pedrd80], and Pedras and de Lem25]

to interesting discussions in the literature and remains a contro- . ) "
versial issueg Heat transfer analysis was also the subject of additional re-

For Rg, less than about 150, traditional analysis of flow insearch(Rocamora and de Lem¢81,32). One of the main moti-

. . . vations for this development was the ability to treat hybrid com-
orous mediaDarcy [1], Forchheimer 2], Brinkman[3], Ward . . . . . .
F4] Whitakerafs] B)e,a[lr][G] Vafai and rgl'ic]en[ﬂ) make[s ]use of a putational domains with a single mathematical tool. Hybrid

. . systems have been calculated for the flow fielé Lemos and
Repre_sentatlve I_Elementary Volum&EV) for which transport Pedras[33]), for nonisothermal recirculating flows in channels
equations are written. When the pore Reynolds number is gre

e
than about 300, turbulence models in the literature follow t %St a porous obstackRocamora and de Lemds4,35) and

approaches. In the first orfeee and Howel[8], Wang and Takle rough a porous insefRocamora and de Lem¢86,37).

i " More specifically, in the work of Pedras and de Lerfi?5,27,
[.9]’ Antohe and Lag¢10], Getachew et al11)), governing équa-  \ as shown that the order of application of time and volume
tions for the mean and turbulent field are obtained by tim

averaging the volume-averaged equations. We shall refer to theaverage operators was immaterial in regard to the final equations

as A-L models. In the second methodoldasuoka and Takatsu Qbtained for the mean flow. However, when obtaining a macro-

scopic transport equation for the turbulent kinetic energy, the or-
[12], Kuwahara et al.[13], Kuwahara and Nakayamgl4], der of application of averages will imply in a different quantity

Takatsu and Masuokpl5], Nakayama and Kuwaharg6)), a being transported. This is because there is an additional math-

vqun:_e-avarage t?]perator 'Z applied :10 .the |OC€(lj| :\llmKe-avedra?g atical operation needed for forming the turbulent kinetic en-
equarl]orlm %re, dlslseconh applroag IS name%?rad_k' mode. rgy. This operation consists in the scalar product of the fluctuat-
morphology-based closure has also been suggé In-an ing velocity by its own transport equation. When this scalar

Catton[17], Travkin et al.[18], Gratton et al[19], Travkin and product is taken after the volume integration process, as in A-L

Catton[20], Travkin and Cattoh21], Travkin et al[22]) based on
the Volume Average Theory. Use of such methodology, howev%]odels(Lee and Howell[8], Wang and Takle 9], Antohe and

. . ; . . h age [10]), the quantity undergoing time integration (')’
is regarded by many as of little practical use in engineering app-'{ug’)‘.[ H]ére diffqerentlyyfrom thge c&?se of the n%ean flo{w ¢>aqua-

Ot&gns, the two domains of integration are no longer independent of
each other. On the other hand, when proceeding with the scalar
%roduct first at the microscopic level, with the N-K approach, a
ifferent variable is subjected to time integration’ (u’) (Ma-
suoka and Takatsli2], Kuwahara et alf14], Kuwahara and Na-
kayama[13], Takatsu and Masuoki87], Nakayama and Kuwa-
hara[16]). In this second method, according to Pedras and de

development of the earlier preliminary mod®&edras and de Le- ngﬁ]se[ggh;a?lrﬁgfés?gn?cogﬁtgastggulfonncsei dlélpeedtlc energy 1s
mos[26]). The double-decomposition concept led to a better chac?-.l.he obiective of this ; er is to classify and cofn are turbu-
acterization of the flow turbulent kinetic energiedras and de{ ! pap P

cations(Lage[23], p. 23. This third class of model will be here
referred to as T-C approach. In the literature, all of these meth
ologies lead to different governing equations.

Motivated by the foregoing discussion, a preliminary propos
for a turbulence model for porous material was establisire
dras and de Lemd®4]). Then, a study on the different views in
the literature has lead to the proposition of thiwuble-
decompositiondea(Pedras and de Lem$285]) and to subsequent

X . . nce models for porous medium presented in the literatdee
Lemos[27]) and was a step before detailed numerical solution ?emos[38]). Proposed equations for the turbulent kinetic energy

are rewritten in light of the double decomposition concept of Pe-
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an attempt to assess their practical use in engineering computaMacroscopic Velocity Fluctuation. The starting point for an
tion. It is expected that the contribution herein provide some irquation for the flow turbulent kinetic energy is an equation for
sight to turbulence modelers devoted to analyze engineering sttse microscopic velocity fluctuation’. Such a relationship can be
tems and environmental flows which can be modeled as a poraustten after subtracting the equation for the mean velagifsom

structure having a fluid flowing in turbulent regime. the instantaneous momentum equation, resultin¢Himze [42],
Warsi[43)):
. . . au’ — _ —
Macroscopic Fluctuating Velocity pi —+V-[uu’+uu+u'u —u'u'] =-Vp' +uVau'.

The derivation to follow has been presented in de Lemos and

Pedrag39]. To the best of the authors’ knowledge, an equation for ©)
the volume-average velocity fluctuation was there derived, for thgow, the volumetric average @) will give,
first time, in light of the double-decomposition concept of Pedras
and de Lemo$40]. For clarity, some basic relationships from the N — —i et
double-decomposition idea are here included. p o (¢{U)) +pVH{g[{uu’)' +(u'u) +(u'u") = (u'u") T}
Double Decomposition. For a general fluid propertyp, the =_V "N+ V2 "N+ R’ 10
intrinsic and volumetric averages are related through the porosity (¢ uVAAU)) (10)
¢ as(Bear[6]), where,
(= | edviler=a(e)is=r R [ nvwyas- L[ npas @
AV a2 AR “av), M (TedsT Ry ), e (11)

whereAV; is the volume of the fluid contained V. The prop-
erty ¢ can then be defined as the sum (af)' and its spatial
variation within the REV, ¢, as(Whittaker[5]),

e=(p)+'p )

J . . ) R ) :
Time fluctuations have to be considered when turbulence ef- p 2 (¢(u")")+pV-{[{u)'(u")"+(u") (u)'+(u")u")’
fects are of concern. The microscopic time-averaged equations are

is the fluctuating part of the total drag due to the porous structure.
Expanding further the divergent operator(ir0) in light of (8),
one ends up with an equation fou')' as,

obtained from the instantaneous microscopic equations. For that, F Uy Curiay -+ Cuiuy = ()Y = u )
the time-average value of property, associated with the fluid is _ _
given as: ==V(g(p))+uV3(H(u'))+R’ (12)
1 (trAt i . .
o= A_tf edt (3) Macroscopic Turbulent Kinetic Energy
t

The objective of this section is to derive both transport equa-
whereAt is the integration time interval. The instantaneous proftions fork,, and(k)' in order to compare similar terms.
erty, ¢, can be defined as the sum of the time averagelus the

fluctuating component’: Equation for.km'=(u’)'-(y’)'/2. From the instantaneous mi-
_ croscopic continuity equation for a constant property fluid one
p=pto (4) has,
From the work of Pedras and de Len{@¥], and Rocamora and . iy ) TN TN —
de Lemog32], one can write for any flow property, combining V- (¢(u))=0=V-[S((u)'+(u))]=0 (13)
decompositiong2) and (4), with time average,
(o) =(¢)' (5) V. (6(W))=0 (14)
(o) =(g") (6)  From(13) and(14) one verifies that,
‘o=l (7) V-(¢(u))=0 (15)
Leading a full variable decomposition &Bedras and de Lemos Taking the scalar product alL0) by (u’)!, making use of(13)-
[40,41): (14)-(15) and time averaging it, an equation fioy, will have for
(P:<E>i +<¢r>i +igtie! gach of its termsnote thate is here considered as independent of
o (8) time):
(o) + (R W P
(@) +(e) +oo +'o — ~ (k)
Equation(8) comprises thelouble decompositioconcept used in p{u’)' E(d)(u’)') =p——— (16)
the development to follow. One should point out tk@trefers to at

any medium property over which the volume and time averaging — i — — —_— —_—
operators are simultaneously applied. It is not restricted to fluicP{u’)' -{V-(¢(uu"))}=p(u")' -{V-[(u)'(u")'+ &('u'u’)'I}

flow problems(e.g., compressible or incompressible, viscous or = pV [0k, ]
inviscid). Characterization of macroscopic fluctuation tempera- P m
tures could well use the idea embodied®). The only limitation +p(uN {V-[p(uu')} (17)

is the independence dime and spaceintegration domains and,
therefore, swelling, shrinking, or vibrating media are not consid- NIv. "I = o(U SV - N+ dOu 0
ered within this frame worksee Pedras and de Lem@$,27] for p{U) AV (@(UU))}=pCu) RV [SU) W+ (U u)']}

a discussion on the limitations of E¢8)). With these ideas in =pp(u" Y (u"):v{u)'
mind, an equation for macroscopic velocity fluctuations is shown _ _
next. +p(u)'{V-[('u"u)']} (18)
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p(UNY V- (S(u'u))} time-average operators in thls case cannot be changed. The quan-
tity k,, is defined by applying first the volume operator to the

=p(U ) {V-[(u) (U )+ p(u'lu') 1} fluctuating velocity field.
Uy (u'y i _ Equation for (k)'=(u’-u’)/2. The other procedure for
=pV-| (U ) ————|+pu"Y {V-[('u"'U')']} (19) composing the flow turbulent kinetic energy is to take the scalar
2 product of (9) by the microscopic fluctuating velocity’. Then
= — applying both time and volume-operators for obtaining an equa-
p(U)' AV (= H{u'u"))}=0 (20) " tion for (k)'=(u’-u’)!/2. It is worth noting that in this case the
TN N TN order of application of both operations is immaterial since no
(u)'-V(d(p")) ==V [$(u)(p")'] (1) additional mathematical operatiofthe scalar produgtis con-
TN V2 A u2 _ ducted in between the averaging processes. Therefore, this is the
pu) VAU = wV(Pkin) — pdem (22) same as applying the volume operator to an equation for the mi-
(u’>—i~R’EO (23) croscopick.

The volumetric average of a transport equationkdras been
where e,,= vV {u'):(V(u’))T. In handling(21) the porosity ¢ carried out in detail by de Lemos and Ped38], and Pedras and
was assumed to be constant only for simplifying the manipulati§lf Lemos[40], and for that only the final resulting equation is
to be shown next. This procedure, however, does not represerte4€ Presented. It reads,
limitation in deriving a general form transport equation fqg 9 _ o
since term(21) will require further modeling. p[ﬁ(¢(k)')+V~(uD(k>')}

Another important point is the treatment given to the scalar
product shown in23). Here, a different view from the work in the
Lee and Howel[8], Wang and Takl¢9], Antohe and Lagé¢10], -v.
and Getachewa et a[11], is considered. The fluctuating drag
form R’ acts through the solid-fluid interfacial area and, as such here
on fluid particles at rest. The fluctuating mechanical energy rep-
resented by the operation {@3) is not associated with any fluid P,= —p(W}‘:Vu_D (29)
particle movement and, as a result, is here considered to be of null A
value. This point shall be further discussed later in this paper. (K)'[up|

A final equation fork,, gives, Gi=cyp K (30)

I PK)

+P+Gi—po(e) (28)

M, )
ut — [ V((k)")

Ok

oV Tk are the production rate ¢k)' due to mean gradients of the seep-
PV [¢{u) K] age velocity and the generation rate of intrinkidue to the pres-
ence of the porous matrix. As mentioned, E28) has been pro-
<p,>i <ur>i'<u/>iH posed by Pedras and de Len@®]|, where more details on its
+ N

p

derivation can be found. The constamtwas numerically deter-
mined in Pedras and de Lemjgkl, 44 for different media and for

= —pV-{ ¢<U’>'{—
p 2
) T o a wide range of porosity and Reynolds numbers. In spite of having
+uVi(dkn) —pd(u)(U"):V(U)' —pden—Dn (24) distinct cases, a unique value of 0.28 was found to be suitable for
where most calculations.

Iy — T T T Comparison of Macroscopic Transport Equations. A com-
Dp=p(u") {V-[&(("u'u’) +(u"u)'+('uu)) ]} (25) parison between terms in the transport equationkfprand (k)!
represents the dispersion kyf given by the last term on the right can now be conducted. Pedras and de Lef23$ have already
of (17), (18), and(19), respectively. Interesting to point out is thatshown the connection between these two quantities as being,
this term can be both of negative or positive sign. et P e Ty T T\ism_ TN
The first term on the right of24) represents the turbulent dif- (k)'=(u"-u")i2=(u)"-(u' )2+ (u’-u') 2=kt (U’ >3/12
fusion ofk, and is normally modeled via a diffusion-like expres- (31)
sion resulting for the transport equati¢Antohe and Lagg10], Expanding the correlation forming the production tefyn by

Getachewa et a[11)), means of(2), a connection between the two generation rates can
also be written as,
I PKm) — R R N/ N T T N O T
p +pV - [ ${U)'Kpn] P;=—p{u’u"):Vup=—p((u")(u"):Vup+{'u"'u"):Vup)
=Pn—p('u"'u")":VUp (32)

- One can note that all production rateskgf due to the mean flow
=V et ;V(qbkm) +Pm=pdén—Dnm (26) constitutes only part o?the general prokgfjction rate responsible for
" maintaining the overall level ofk)'.
where The dissipation rates also carry a correspondence if one
Pru= — p U V0¥ (0 en TP
| o o (e)i= nTu (V)Y
is the production rate ok, due to the gradients of the macro- . i i i .
scopic time-mean velocityu)'. =p(VuY:[(Vu YT+ »{((Vu'):'(Vu")T)!

Lee and Howel[8], Wang and Takl¢9], Antohe and Lag§10],
and Getachewa et dl11], made use of the above equation kgy
considering forR’ (11) the Darcy-Forchheimer extended model
with macroscopic time-fluctuation velocitiegi’)'. They have
also neglected all dispersion terms that were here groupe®into (33)
(25). Note also that the order of application of both volume- an@onsidering further constant porosity,

=%V(¢(u’>i):[V(¢<u’)i)]T+v(i(Vu’):i(Vu’)T)i
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Table

1 Classification of turbulence models for porous media.

Model | Authors General characteristics and treatment of Sequence of Applications

Class surface integrals integration

A-L Lee & Howell, 1987, Wang | Surface integrals are not applied since models are Space-time Only theory presented.

& Takle, 1995, Antohe & based on macroscopic quantities subjected to time- Numerical results using this
Lage, 1997, Getachewa et al., | averaging only. model are found in Chan et al.,
2000. 2000.

N-K Masuoka & Takatsu, 1996, Masuoka & Takatsu, 1996, assumed a non-null value | Time-space Microscopic computations on
Kuwabhara et al, 1998, in their eqn. (11) for the turbulent shear stress periodic cell of square rods.
Kuwahara & Nakayama, S, =—pu'n’ along the interfacial area 4;. Takatsu & Macroscopic model
1998, Takatsu & Masuoka, Masuoka, 1998, assume for their volume integral in computations presented.

1998, Nakayama & eqn. (14) a different form zero value for
Kuwahara, 1999. d=(u/p+p [o,p)Vk atthe interface 4,

T-C Gratton ef al., 1994, Travkin | Morphology-based theory. Surface integrals and Time-space Only theory, no closure for the
& Catton, 1992, 1993, 1995, | volume-average operators depend on media macroscopic equation is
1998, Travkin et al., 1993, morphology. presently available.

Travkin et al,, 1999

P-dL Pedras & de Lemos, 2000a, | Double-decomposition theory. Surface integrals Time-space Microscopic computation on
2001a, 2000b, Rocamora & | involving null quantities at surfaces are neglected. The periodic cell of circular ( Pedras
de Lemos, 2000a. connection between space-time and time-space & de Lemos, 2001b) and elliptic

theories is unveiled. Pedras & de Lemos, 2001c¢,
200d) rods. Macroscopic
computations for porous media
presented. Results for hybrid
domains are found in de Lemos
& Pedras, 2000b and Rocamora
& de Lemos, 2000b, 2000c,
2000d.

(6)=en+ VW (34) Square rods. Macroscopic results in a channel filled with a porous
material was also a test case run by Nakayama and Kuwahara
Equation(34) indicates that an additional dissipation rate is ne 16].
essary to fully account for the energy decay process inside theThe work developed in a series of papers using a morphology-
R.E.V. Itis worth noting tha(31), (32), and(34) seems to suggest oriented theory is here group in the T-C model category shown in
that models consideringk)' are by far more complete than theo-Table 1. In this morphology-based theory, surface integrals result-
ries based ok, . ing after application of volume-average operators depend on the
media morphology. Governing equations set up for turbulent flow,
General Classification of Turbulence Models for Porous although complicated at first sight, just follow usual volume inte-
Media gration technique applied to standakde and k-L turbulence
o ) models. In this sense, time-space integration sequence is followed.
Based on the derivations above, one can establish a geneygl closure is proposed for the unknown surface integfafsl
classification of the models presented so far in the Ilteraﬁdee morphology parameterso that practical applications of such de-
Lemos[38]). Table 1 classifies all proposals into four major catyelopment in solvingeal-world engineering flows is still a chal-
egories. These classes are based on the sequence of applicatiggrfe to be overcome. Nevertheless, the developed theory seems
averaging operators, on the handling of surface integrals and @he mathematically correct even though additicadihocinfor-
the application reported so far. _ mation is still necessary to fully model the remaining unknowns
The A-L models make use of transport equations Ky snd medium-dependent parameters.
=(u")'-(u")'/2 instead of(k)'=(u’-u’)'/2. Consequently, this Lastly, the model group named P-dL uses the recently devel-
methodology applies only time-averaging procedure to already efped double-decompositiotheory just reviewed above. In this
tablished macroscopic equatiofsee for example Hsu and Chengdevelopment, all surface integrals involving null quantities at in-
[45], for macroscopic equationsin this sense, the sequenceerfaceA; are neglected. The connection between space-time and
space-timentegration is employed and surface integrals are ndime-space theories is made possible due to the splitting of the
manipulated since macroscopic quantities are the sole independ#pendent variables into folrather than twp components, as
variables used. Application of this theory is found in Chan et aéxpressed by Eq8). For the momentum and energy equations,
[46]. the double-decomposition approach has proven that either time-
N-K models constitute the second class of models here cogpace or space-time order of application of averaging operators is
piled. It is interesting to mention that Masuoka and Tak#is], immaterial. For the turbulence kinetic energy equation, however,
assumed a non-null value for the turbulent shear streshe order of application of such mathematical operators will define
S=—pu’u’, along the interfacial ared; in their Eq.(11). With  different quantities being transport¢éledras and de Lem¢&7],
that, their surface integraf, §-ndA was associated with the Rocamora and de Lemd82]). Microscopic computation on a
Darcy flow resistance term. Yet, using the Boussinesq approxinfgriodic cell of circular(Pedras and de Lemdé1]) and elliptic
tion as in their Eq(7), S=24D— (2/3)kl, one can also see that (Pedras and de Lemgd7]) rods were used in order to calibrate
both x, andk will vanish at the surfacé, , ultimately indicating "€ Proposed model. Pedras and de Lef@ further presented
that the surface integral in question is actually equal to zero. Sinfflacroscopic computations for flow in a channel filled with a po-
larly, Takatsu and Masuok@L5], assumed for their surface inte-'0US material. Further results for hybrid domajpsrous medium-
gral in Eq. (14), fAid-ndA, a non-null value wheral=(u/p clear fluid) are found in de Lemos and Pedi&8] and Rocamora

o ) —_ and de Lemo$34-36).
+ uylop) VK. Here also it is worth noting tha&fk=u’-(Vu’)"
and that, at the interfack, , Vk=0 due to the non-slip condition. . . .
Consequently, also in this case the surface integrdl @fer A; is Discussion and Conclusions
of zero value. In regard to the average operators used, N-K mod-This paper presented the two views in the literature for charac-
els follow thetime-spacéntegration sequence. Calibration of theterizing the turbulence kinetic energy for flow in porous media.
model required microscopic computations on a period cell dfhe two transport equations where derived in light of the double
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decomposition concept and a comparison between the productipnthe wall on the fluid and the fluid particle velocitgr the

and dissipation terms are presented. A general classification of\alocity of the fluid particle in contact to the moving wall

models published so far was established. The discussion belowt is also clear that boundary forces modify the fluid pressure

further compares the two views in the literature. field, which, in turn, modifies fluid velocity and then the mechani-
In the path followed by Lee and Howdl8], Wang and Takle cal energy within the flow. However, the momentum equation in

[9] and Antohe and Lagil0], the drag ternR was represented by its differential form considers only the forces acting in the vicinity

a Darcy-Forchheimer extended model in its usual form, of a moving particle. At walls, there is no fluid movement except
in the case of moving surfaces. Following this line of thought, no
me ceppluplup term derived from(35) could then contribute to either increase or
R=—|—Up+ —F7—— (35) P
K \/R decrease the overall value of the flow turbulent kinetic energy. An

exception would be a movingyibrating) porous structure and, in

wherecg is a constant. Time decomposition was then applied this case, energy would be added to the fluid. It is recognized,
the Darcy velocity in(35) and the 4th, 5th, 6th, and 8th terms inhowever, that additional terms in theequation due to the solid
the divergent of(12) were neglected. A few comments on thisstructure are necessafijakayama and Kuwahafa6)). Different
methodology for setting up a transport equation for the flow kiproposals are made in the literature and recent work in this area is
netic energy seems timely. expected to improve current model assumpti@Redras and de

The Darcy-Forchheimer extended model is based on averagemos[27]).
values obtained after comparing bulk flow rates to bulk pressureAlso, for a homogeneous, fully-developed unidimensional flow
drops across beds of saturated media. It compares, accordinglyough a porous bed, all terms appearing inkhesquation and
time-averaged quantities although a fluctuating component for tbeginated from the time decomposition of Darcy-Forchheimer ex-
macroscopic velocity is defined and has been used throughout tbeded model will be negativ@ote that all drag forces i(85) are
development shown above. Applying then a time-decompositionegative” and will lead to “sink” terms in thek,-equation. As
operation to(35) in order to represent extra turbulent kinetic ena consequence, the only possible solution for this case will be
ergy for the flow in a porous matrix seems to neglect the fact thiat,=0. This, in fact, was the conclusion reached by Antohe and
such terms were proposed based on “time-independent” quaritiage [10]. However, Nakayama and Kuwahdid6], points out
ties. Accordingly, Eq(35) seems to be a model for tiene-mean that for this same situation a certain level of turbulent kinetic
drag rather than for thimstantaneousorce (11). energy must stay as long as the presence of porous matrix keeps

Also, one interesting point in the development of an equatiagenerating it. This disagreement could be explained based on the
for k, is the treatment given to the scalar prod(®3). This term  fact that each work talks about a different quantity, @nd(k)').
represents the statistical value of the fluctuating mechanical gror flow in such infinite medium, the only generating mechanism
ergy associated with the fluctuating dreg given by (11). The s given by termG; in (28) causing a non-null value fdk)'. This
fluctuating dragR’, although different from zero, acts through thavould be equivalent to considering the decay of turbulence behind
solid-fluid interfaceA; and, as such, on fluid particles “at rest.”a grid and analyzing the porous structure as a sequence of closely
As a consequence, this force should not contribute to producipgcked grids. Thus, mechanical energy continuously extracted
mechanical energy within the flow. from the mean flow, by gradients aficroscopicvelocity, feeds

Accordingly, the work done by a force acting on a particlene macroscopic turbulence field. This mechanism is modeled by
moving along a certain distance is the scalar product of this forate generating ternG;. On the other hand, the production
F, by the distancedr, such as P-terms in(32), for bothk forms, will be zero due to null gradi-
ents of themacroscopianean velocity.

dW=F.dr (36) Applying this same reasoning to the macroscopic momentum
The work rate or power is then defined as, equation including body force#isu and Cheng45s]),
- dW dr d i i
W:W:F.EZF.U (37) p&(¢<U>)+V(¢)<UU>)
or say, in Eq.(37) u is the velocity of the particle on which the =—V(H(p))+uVi(Hu))+ dpg+R  (40)

force F is being applied.

Following Bird et al.[48], the microscopidlocal and instanta- Vhere

neou$ mechanical energy equation is obtained starting with the © 1
momentum Cauchy equation, =— . — —
u uchy equati R Y AIn (Vu)ds A\/L\Inpds (42)
u
PO " V-T+pg (38) one verifies that the five first terms represent forces acting on fluid

particles whose macroscopic mean velocity is given{by’ or
whereT is the stress tensor. All terms {88) represent forces per ¢(u)‘. The last termR, acts on particles that are located on the
unit volume acting on a fluid element having velocityFollow- interfacial aread;, (R is a surface force divided by volumdf
ing the concept embodied if87), the mechanical energy pro-the interfacial are#;, moves(vibrates then the mechanical en-
duced by each one of these forces is given by the scalar produceajy produced will be the scalar product®fand the velocity of

(38) and the local velocity, A, otherwiseR will not produce mechanical energy.
D /1 In several papers,Vafai and Tien[7], Hsu and Chend45],
p— _uz) —U-V-T+u-pg (39) Antohe and Lagé¢10], among othensR is modeled as a function
Dt\2 i v
of the Darcy velocity{u)”. However, that does not mean tHat

Itis clear to see that all terms {89) vanish due to the non-slip &Cts on particles having an average velogity”. Consider, for
condition at a solid stagnant wall. Text books in Fluid Mechanic&x@mple creeping flonaround a sphere where both viscous drag,
(e.g., Bird et al[48], Fox and McDonald49]) comment that in I, @nd form dragF,, are obtained by integrating viscous and
the neighborhood of a fluid particle, stagnant solid walls cannBfessure forces, respectively, over the sphere surface. The total
promote mechanical energy. Or say, solid walls can only gener&f@d is given by,
mechanical energy within the flow if the wall itself is moving _
(e.g., a rotating turbine blageBy means 0f37), this mechanical FptFu=6muRu. (42)
energy would be given by the scalar product of the force exertathere R is the radius of the sphere and, is the free stream
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velocity. In spite of having the total drag described as a function =~ modeling for saturated porous medi&foc. of COBEM99-15th Braz. Congr.
of u.,, this force acts on stagnant particles and, as such, can not Mech. Eng.(on CD-ROM, ISBN: 85-85769-03-3, guas de Lind@, S

. L . . Paulo, Brazil, November 22—2@n Portuguese
produce mechanical energy within the flow. Likewise, foréés [27] Pedras, M. H. J., and de Lemos, M. J. S., 2000, “On the definition of turbulent
(11) andR (41) that appear in the governing equations for porous  kinetic energy for flow in porous media,” Int. Commun. Heat Mass Transfer,
media cannot produce mechanical energy unless the porous struc- 27, No. 2, pp. 211-220.
ture itself is allowed to move or vibrate. In this case, mechanicdPk8] Pedras, M. H. J., and de Lemos, M. J. S., 2000, “Numerical solution of

energy is added to the fluid via the action of the porous structure. turbulent flow in porous media using a spatially periodic cell and the low
Reynoldsk- e model,” Proc. of CONEM2006National Mechanical Engineer-
ing Congresgon CD-ROM), Natal, Rio Grande do Norte, Brazil, August 7—-11
Acknowledgment (in Portuguese
[29] Rocamora, Jr., F. D., and de Lemos, M. J. S., 1998, “Numerical solution of
turbulent flow in porous media using a spatially periodic array andktze

MJSdL is thankful to CNPq, Brazil, for their financial support

during the course of this research. model,” Proc. ENCIT-98-7th Braz. Cong. Eng. Th. Sc\ol. 2, pp. 1265—
1271, Rio de Janeiro, RJ, Brazil, November 3-6.
References [30] de Lemos, M. J. S., and Pedras, M. H. J., 2000, “Modeling turbulence phe-
nomena in incompressible flow through saturated porous meia¢. of 34th
[1] Darcy, H., 1856Les Fontaines Publiques de la Vile de Dijarictor Dalmond, ASME-National Heat Transfer Conferenden CD-ROM, ASME-HTD-
Paris. 1463CD, Paper NHTC2000-12120, ISBN:0-7918-1997-3, Pittsburgh, Pennsyl-
[2] Forchheimer, P., 1901, “Wasserbewegung durch Boden,” Z. Ver. Deutsch. Ing.  vania, August 20—22.
45, pp. 1782-1788. ] ] [31] Rocamora, Jr., F. D., and de Lemos, M. J. S., 1999, “Simulation of turbulent
[3] Brinkman, H. C., 1947, “A calculation of the viscous force exerted by a  heat transfer in porous media using a spatially periodic cell andklae
flowing fluid on a dense swarm of particles,” Appl. Sci. Rek.pp. 27-34. model,” Proc. of COBEM9915th Braz. Congr. Mech. Engon CD-ROM),
[4] Ward, J. C., 1964, “Turbulent flow in porous media,” J. Hydraul. Div., Am. ISBN: 85-85769-03-3, fuas de Lind@, S@ Paulo, Brazil, November 22—
Soc. Civ. Eng.90 (HY5), pp. 1-12. 26.
[5] Whitaker, S., 1969, “Advances in theory of fluid motion in porous media,” [32] Rocamora, Jr., F. D., and de Lemos, M. J. S., 2000, “Analysis of convective
Ind. Eng. Chem.61, pp. 14-28. ) ) ) heat transfer for turbulent flow in saturated porous media,” Int. Commun. Heat
[6] Bear, J., 1972Dynamics of Fluids in Porous Medi&merican Elsevier, New Mass Transfer27, No. 6, pp. 825—834.
York. ) . o [33] de Lemos, M. J. S., and Pedras, M. H. J., 2000, “Simulation of turbulent flow
[7] Vafai, K., and Tien, C. L., 1981, Boundary and inertia effects on flow and through hybrid porous medium-clear fluid domain®foc. of IMECE2008
heat transfer in porous media,” Int. J. Heat Mass Trargsf, ,pp. 195-203. ASME-Intern. Mech. Eng. CongrASME-HTD-366-5, pp. 113—122, ISBN:0-
[8] Lee, K., Howell, and J. R., 1987, “Forced convective and radiative transfer 7918-1908-6. Orlando. Florida.
within a highly porous layer exposed to a turbulent external flow fielRtgc. [34] Rocamora, Jr., F. D., and de Lemos, M. J. S., 2000, “Prediction of velocity and

of the 1987 ASME-JSME Thermal Eng. Joint Cowl. 2, pp. 377-386. temperature profiles for hybrid porous medium-clean fluid domaiRgyt. of
[9] Wang, H., and Takle, E. S., 1995, “Boundary-layer flow and turbulence near  ~oNEM2000-National Mechanical Engineering Congregsn CD-ROM,
porous obstacles,” Boundary-Layer Meteoral4, pp. 73-88. ) Natal, Rio Grande do Norte, Brazil, August 7—11.

[10] Antohe, B. V., and Lage, J. L., 1997, "A general two-equ?tlon Macroscopiqag) Rocamora, Jr., F. D., and de Lemos, M. J. S., 2000, “Laminar recirculating
turbulence model for incompressible flow in porous media,” Int. J. Heat Mass ™ i, and heat transfer in hybrid porous medium-clear fluid computational do-
Transf.,40, pp. 3913_3024' W . mains,” Proc. of 34th ASME-National Heat Transfer Confereriom CD-

[11] Getachew, D., Minkowycz, W. J., and Lage, J. L., 2000, “A modified form of ROM), ASME-HTD-1463CD, Paper NHTC2000-12317, ISBN:0-7918-1997-3
the k-e model for turbulent flow of an incompressible fluid in porous media,” Pittsb(;rgh, Pennsylvania, A’ugust 20-22. ' ' '

Int. J. Heat Mass Transf3, pp. 2909-2915. 36] Rocamora, Jr., F. D., and de Lemos, M. J. S., 2000, “Heat transfer in suddenl
[12] Masuoka, T., and Takatsu, Y., 1996, “Turbulence model for flow through po—[ l expanded ’ﬂo;/’v i.n ; channel with ,poéoﬁs Ii’nsertér’oc. of IMECE2000 Y

rous media,” Int. J. Heat Mass TransR9, pp. 2803—2809. .
: . ASME-Intern. Mech. Eng. CongrASME-HTD-366-5, pp. 191—195, ISBN:0-
13l ﬁlévrvuigf r:?éc;:é]irif a?fetyﬁﬂ"u?érﬁ‘f%?ﬂﬁs“!f%ui'm""e”d?a“fifﬁ‘yimf’aﬁ\i;.|199§;ioc'?iE’ 7918-1908-6, Orlando, Florida, November 5-10.
9 p 9 a spatially p [37] Rocamora, F. D., and de Lemos, M. J. S., 2001, “Turbulence Modeling for

array,” J. Porous Medial, pp. 47-55. non-isothermal flow in undeformable porous media”, Proc. of NHTCOI, 35th

[14] Kuwahara, F., and Nakayama, A., 1998, “Numerical modeling of non-Darcy
. h . Nat. Heat Transfer Conf. ASME-HTD-1Y9SCD, Paper NHTC 2001-20178
convective flow in a porous mediumpProc. 11th Int. Heat Transf. Conf. ISBN: 0791835278, Anaheim, California, June 10—12.

Kyongyu, Korea, August 23-28.

« : 38] de Lemos, M. J. S., 2001, “Modeling turbulent flow in saturated rigid porous
(251 gﬁl::iuhqzaiqu‘] MP?r%%ZaMlaiéggg’ Zzgr_b;‘,!.’elm phenomena in flow througr{ media,” Proc. of NHTC'01, 35th National Heat Transfer Conferent&5-04

Panel on Porous Media, Anaheim, CA, June 10-12.

(16] gl:vta%a:q;éﬁdasr:geﬁ?xwa;gi\ﬂi’ }ggﬁj’id’: Eﬁg{;fcggla?;t_nﬂ;gce model f0[39] de Lemos, M. J. S., and Pedras, M. H. J., 2001, “Alternative transport equa-

[17] Travkin, V. S., and Catton, I., 1992, “Models of turbulent thermal diffusivity tions for turbﬁlent _klneltlc energy f? flow f'n porous mediaProc. of
and transfer coefficients for a regular packed bed of sphefst. 28th NHTC'01, 35th National Heat Trgns er Con ereno@SME-H'l’_D-IAQSC_D, .
National Heat Transfer Conferenc&an Diego, C-4, ASME-HTD-193, pp. ?Sr?:rloNT;CZOOl_ZOlW' ISBN: 0-7918-3527-8, Anaheim, California,
15-23. e .

[18] Travkin, V. S., Catton, I, and Gratton, L., 1993, “Single-phase turbulent trans[40] Pedras, M. H. J., and de Lemos, M. J. S., 2001, “Macroscopic Turbuleimze
port in prescribed non-isotropic and stochastic porous metHaat Transfer Modeling for Incompressible Flow Through Undeformable Porous Media,
in Porous MediaASME-HTD-240, pp. 43—48. Intern. J. Heat and Mass Trans##4, No. 6, pp. 1081-1093.

[19] Gratton, L., Travkin, V. S., and Catton, I., 1994, “Numerical solution of tur- [41] Pedras, M. H. J., and de Lemos, M. J. S., 2001, “Simulation of turbulent flow
bulent heat and mass transfer in a stratified geostatistical porous layer for high N Porous media using a spatially periodic array and a low Re two-equation
permeability media,” ASME Proceedings HTD-Vol. 41, pp. 1-14. closure,” Numer. Heat Transfer, Part 89, No. 1, pp. 35-59.

[20] Travkin, V. S., and Catton, I., 1995, “A two temperature model for turbulent [42] Hinze, J. O., 19597urbulence McGraw-Hill, New York. .
flow and heat transfer in a porous layer,” ASME J. Fluids Entl7, [43] Warsi, Z. U. A., 1998 Fluid Dynamics-Theoretical and Computational Ap-

pp. 181-188. proaches 2nd ed., CRC Press, Boca Raton. i

[21] Travkin, V. S., and Catton, 1., 1998, “Porous media transport descriptions|44] Pedras, M. H. J., and de Lemos, M. J. S., 2001, “Satublumeica do Es-
non-local, linear, and non-linear against effective thermalffluid properties,” ~ coamento Turbulento num Meio Poroso Formado por Hastestidzs—
Adv. Colloid Interface Sci.76-77, pp. 389—443. Aplicacao do modelok- e para baixo e alto Reynolds,” Proc. GFOBEMO1-

[22] Travkin, V. S., Hu, K., and Catton, I., 1999, “Turbulent kinetic energy and 16th Braz. Congr. Mech. Engion CD-ROM, Uberfandia, MG, Brazil,
dissipation rate equation models for momentum transport in porous media,”  November 26-30. i o _
Proc. 3rd ASME/JSME Joint Fluids Engineering Conferefme CD-ROM,  [45] Hsu, C. T., and Cheng, P., 1990, “Thermal dispersion in a porous medium,”

Paper FEDSM99-7275, San Francisco, California, 18—23 July. Int. J. Heat Mass Transf33, pp. 1587-1597.

[23] Lage, J. L., 1998, “The fundamental theory of flow through permeable medid46] Chan, E. C., Lien, F.-S., and Yavonovich, M. M., 2000, “Numerical Study of
from Darcy to turbulence,” irffransport Phenomena in Porous Med®. B. Forced Flow in a Back-Step Channel Through Porous Layergc. of 34th
Ingham and I. Pop, eds., Elsevier Science, ISBN: 0-08-042843-6, 446 pp. ASME-National Heat Transfer Conferenden CD-ROM, ASME-HTD-

[24] Pedras, M. H. J., and de Lemos, M. J. S., 1998, “Results for macroscopic ~ 1463CD, Paper NHTC2000-12118, ISBN:0-7918-1997-3, Pittsburgh, Pennsyl-
turbulence modeling for porous mediaProc. of ENCIT98-7th Braz. Cong. vania, August 20—22.

Eng. Th. Sci.Vol. 2, pp. 1272-1277, Rio de Janeiro, Brazil, Nov. 366 [47] Pedras, M. H. J., and de Lemos, M. J. S., 2001, “Adjustment of a macroscopic
Portuguese turbulence model for a porous medium formed by an infinite array of elliptic

[25] Pedras, M. H. J., and de Lemos, M. J. S., 1999, “On volume and time aver-  rods,” 2nd International Conference on Computational Heat and Mass Trans-

aging of transport equations for turbulent flow in porous medtgdc. of 3rd fer, Rio de Janeiro, Brazil, Oct. 22—-26.

ASME/JSME Joint Fluids Engineering Conferenom CD-ROM, ASME- [48] Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960:ansport Phenomena

FED-248, Paper FEDSM99-7273, ISBN 0-7918-1961-2, San Francisco, Wiley, New York.

California, July 18—-23. [49] Fox, R. W., and McDonald, A. T., 1998ntroduction to Fluids Mechanics
[26] Pedras, M. H. J., and de Lemos, M. J. S., 1999, “Macroscopic turbulence  Wiley, New York, 5th ed., p. 156.

940 / Vol. 123, DECEMBER 2001 Transactions of the ASME



