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This paper deals with numerical simulation of turbulence in a parallel flow moving bed, in which turbulence is
considered in the void spaces occupied by the fluid phase. Volume averaging techniques are applied to both
time-mean and statistical flow fields. The set of resulting governing equations is discretized via the control-
volume method and the resulting algebraic equation set is solved via the SIMPLE method. Results indicate that
for lower values of slip ratio, Darcy number and bed porosity, higher levels of turbulence kinetic energy are
computed.
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1. Introduction

Many applications in industry are concerned with turbulent flow
through permeable beds. Examples are found in devices such as gasifiers,
in chemical separation equipment and in recuperation of petrochemical
processes, to mention a few applications. Within this context, Yang [1]
showed numerical simulation of turbulent fluid flow and heat transfer
characteristics in heat exchangers fitted with a porous medium, where
the permeable material was inserted in a heat exchanger to improve its
process performance. Ref. [1] applied the k–εmodel to handle turbulence.
Further, among many studies reporting results on turbulent gas–solid
transport, one can mention the one by Littman et al. [2], who showed
the effect of particle diameter, particle density and loading ratio on the
drag coefficient in steady turbulent gas–solid transport, Mansoori et al.
[3], who presented a thermo-mechanical modeling for turbulence heat
transfer in gas–solid flows including particle collisions and Zhang and
Reese [4], who studied particle–gas turbulence interactions using a
kinetic theory approach applied to granular flows.

Recently, a macroscopic model for turbulence in porous media
was proposed and applied to a number of flows including thermal equi-
librium [5] as well as non-equilibrium [6] between temperatures of the
fixed solid and fluid phases. For cases when the solid phase also moves,
computations for turbulent flow were also presented in de Lemos and
Saito [7], but therein their study was limited to the investigation of
the effect of the relative velocity on the statistical field. In addition, lam-
inar flow and heat transfer studies in amoving porous bed in parallel [8]
and in counter flow [9] configurations were also published. In [8,9],
a broader study presented the effects of Reynolds number, slip ratio,
ghts reserved.
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porosity and permeability of themediumon heat transfer, but only lam-
inar flow was therein investigated.

Therefore, the purpose of this contribution is to extend the work
of [7] on turbulent moving beds, including now a variety of effects
shown previously only for laminar flows [8,9], namely the effect of
Reynolds number, slip ratio, porosity and permeability of the medium.
Here, the focus is on the impact on the levels of turbulent kinetic energy
when several flows andmediumproperties are varied. Further, two tur-
bulence models are here employed, namely the High and Low Reynolds
number formulations.

2. Macroscopic model for flow equations

The equations to follow are available in the open literature and for
that their derivation is not repeated here [6]. The geometry considered
in this work is schematically shown in Fig. 1a. A moving porous bed
co-flows with a permeating fluid and both, the solid matrix as well as
theworkingfluid,move in the samewest-to-east direction. The channel
shown in thefigure has length and height given by L andH, respectively.
For the sake of completeness, equations for both fixed and moving me-
dium are presented below.

2.1. Fixed bed

Amacroscopic form of the governing equations is obtained by taking
the volumetric average of the entire equation set. In this development,
the porous medium is considered to be rigid, fixed and saturated by the
incompressible fluid. The final forms of the equations considered here
are given by [6]:

Continuity:

∇ � uD ¼ 0 ð1Þ

http://dx.doi.org/10.1016/j.icheatmasstransfer.2013.08.007
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Nomenclature

Ai Interfacial area [m2]
ai Interfacial area per unit volume, ai = Ai/ΔV [m−1]
cF Forchheimer coefficient
cK Non-dimensional turbulence model constant
c's Model constants
D Particle diameter [m]
D Deformation rate tensor, D = [∇u + (∇u)T]/2 [s−1]
f2 Damping function
fμ Damping function
Gi Production rate of 〈k〉i due to the porous matrix
H Distance between channel walls [m]
k Turbulent kinetic energy per unit mass [m2/s2]
〈k〉i Intrinsic (fluid) average of k
〈k〉v Volume (fluid + solid) average of k
K Permeability [m2]
L Channel length [m]
p Thermodynamic pressure [N/m2]
〈p〉i Intrinsic (fluid) average of pressure p [N/m2]
Re Reynolds number based on uD

ReD Reynolds number based on urel

u Microscopic time-averaged velocity vector [m/s]
uh ii Intrinsic (fluid) average of u [m/s]
uD Darcy velocity vector, uD ¼ ϕ uh ii [m/s]
urel Relative velocity based on total volume, urel ¼ uD−us

[m/s]
uτ Velocity shear stress [m/s]
X Dimensionless coordinate
y+ Dimensionless distance between the wall and first grid

node, yþ ¼ ywuτ
ν

Greek
ε Dissipation rate of k, ε ¼ μ∇u′ : ∇u′ð ÞT=ρ [m2/s3]
〈ε〉i Intrinsic (fluid) average of ε
ϕ Porosity
γ Phase identifier
μ Fluid dynamic viscosity [kg/(m s)]
μt Turbulent viscosity [kg/(m s)]
μtϕ Macroscopic turbulent viscosity [kg/(m s)]
v Kinematic viscosity [m2/s]
ρ Density [kg/m3]
σk, σε Non-dimensional constants

Subscript
s, f s = solid, f = fluid
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Momentum:

ρ ∇ � uDuD

ϕ

� �� �
¼ −∇ ϕ ph ii

� �
þ μ∇2u

D
þ∇ � −ρϕ u′u′

D Ei
� �

−
μϕ
K

uD þ cFϕρ uDj juDffiffiffiffi
K

p

2
64

3
75;

ð2Þ

Turbulent kinetic energy:

ρ∇ � uD kh ii
� �

¼ ∇ � μ þ
μtϕ

σk

� �
∇ ϕ kh ii
� �� �

þ Pi þ Gi−ρϕ εh ii ð3Þ
Dissipation rate of turbulence kinetic energy:

ρ∇: uD εh ii
� �

¼ ∇ � μ þ
μtϕ

σε

� �
∇ ϕ εh ii
� �� �

þ c1P
i εh ii
kh ii

þ c2
εh ii
kh ii Gi−ρϕ εh ii

� �
ð4Þ

where uD is the Darcy velocity vector, uD ¼ ϕ uh ii, ϕ is the porosity, ρ is
the density of the fluid, p is the pressure, μ is the fluid dynamic viscosity,
K is the medium permeability, cF is the Forchheimer coefficient, μtϕ is

the macroscopic turbulent viscosity, σk and σε are constants, 〈k〉i is the
intrinsic (fluid) average of k and 〈ε〉i is the intrinsic dissipation rate

of 〈k〉i, ε ¼ μ∇u′ : ∇u′ð ÞT=ρ. In Eq. (4), c1 and c2 are constants, Pi ¼
−ρ u′u′

D Ei
: ∇uD is the production rate of 〈k〉i due to gradients of

uD and Gi ¼ ckρϕ kh ii uDj j=
ffiffiffiffi
K

p
is the generation rate of the intrinsic

average of k due to the action of the porous matrix (see [6] for
details).

2.2. Moving bed

For a moving bed, only cases where the solid phase velocity is kept
constant will be considered here, or say, we assume a moving bed
with constant velocity that crosses a fixed control volume in addition
to a co-flowing fluid. The steps below show first some basic definitions
prior to presenting a proposal for a set of transport equations for analyz-
ing moving systems.

A general form for a volume-average of any property φ, distributed
within a phase γ that occupies volume ΔVγ can be written as (Gray
and Lee [10], Whitaker [11,12]),

φh iγ ¼ 1
ΔVγ

Z
ΔVγ

φdVγ : ð5Þ

In the general case, the volume ratio occupied by phase γ will be
ϕγ = ΔVγ/ΔV where ΔV is the volume of the so-called “Representative
Elementary Volume”, REV. If there are two phases, a solid γ = s and a
fluid phase γ = f, volume average can be established on both regions.
Also,

ϕs ¼ ΔVs=ΔV ¼ 1−ΔV f =ΔV ¼ 1−ϕ f ð6Þ

and for simplicity of notation one can drop the superscript “f” to get

ϕs ¼ 1−ϕ: ð7Þ

As such, calling the instantaneous local velocities for the solid and
fluid phases, us and u, respectively, one can obtain the average for the
solid velocity, within the solid phase, as follows,

uh is ¼ 1
ΔVs

Z
ΔVs

usdVs ð8Þ

with, in turn, can be related to an average velocity referent to the entire
REV as,

us ¼
ΔVs

ΔV

z}|{1−ϕð Þ

1
ΔVs

Z
ΔVs

usdVs

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
uh is

: ð9Þ

A further approximation herein is that the porous bed is rigid and
moves with a steady average velocity us. Note that the condition of



a)

b)

Fig. 1. a) Porous bed reactor with a moving solid matrix; and b) control volume notation.
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steadiness for the solid phase gives us ¼ us ¼ const where the overbar
denotes, as usual in the literature, time-averaging.

For the fluid phase, the intrinsic (fluid) volume average gives, after
using the subscript “i” also for consistency with the literature,

uh ii ¼ 1
ΔV f

Z
ΔV f

udV f : ð10Þ

Both velocities can then be written as,

uD ¼ ϕ uh ii;us ¼ 1−ϕð Þ uh is ¼ const: ð11Þ

A relative velocity is then defined as,

urel ¼ uD−us: ð12Þ

In addition, a relative Reynolds number based on urel and D can be
defined as:

ReD ¼ ρ urelj jD
μ

: ð13Þ

Further, if one uses the Darcy velocity and the overall reactor size H,
one has a different definition for Reynolds given by,

Re ¼ ρ uDj jH
μ

: ð14Þ

Incorporating now in Eq. (2) a model for the Macroscopic Reynolds

Stresses−ρϕ u′u′
D Ei

, and assuming that a relative movement between
the two phases is described by Eq. (12), the momentum equation reads
(see [6,7] for details),

ρ ∇ � uDuD

ϕ

� �� �
−∇ � μ þ μ tϕ

� �
∇uD þ ∇uDð ÞT
h in o

¼ −∇ ϕ ph ii
� �

− μϕ
K

urel þ cFϕρ urelj jurelffiffiffiffi
K

p

ð15Þ

where μ tϕ
is the macroscopic eddy viscosity given by

μ tϕ
¼ ρcμ f μ

kh ii2

εh ii ; ð16Þ

being cμ a dimensionless constant and fμ a damping function, which
differs from unit if a Low-Reynolds turbulence model is applied.
More on damping functions and model constants will be shown
below. Thus, to obtain the eddy viscosity, μ tϕ

, we used here the

Low and High Reynolds number k–ε models, whose equations for
the turbulent kinetic energy and its dissipation rate, incorporating
now a relative movement between the two phases urelj j , are given
next [7].

A transport equation for 〈k〉i can be written as,

ρ ∇ � uD kh ii
� �h i

¼ ∇ � μ þ
μ tϕ

σk

� �
∇ ϕ kh ii
� �� �

−ρ u′u′
D Ei

: ∇u
D
þ ckρ

ϕ kh ii urelj jffiffiffiffi
K

p|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Gi

−ρϕ εh ii

ð17Þ



Table 1
Damping functions and constants for High and Low Reynolds turbulence models.

High Reynoldsmodel
proposed by Launder
and Spalding [13]

Low Reynolds model proposed by Abe et al. [14]

fμ 1.0 1− exp − νεð Þ0:25y
14ν

h in o2
1þ 5

k2=νεð Þ0:75 exp − k2=νεð Þ
200

� �2
" #( )

f2 1.0 1− exp − νεð Þ0:25y
3:1ν

h in o2
1−0:3 exp − k2=νεð Þ

6:5

� �2
" #( )

σk 1.0 1.4
σε 1.33 1.3
c1 1.44 1.5
c2 1.92 1.9
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where σk and ck are dimensionless constants and the generation rate
due to the porous substrate, Gi, which was included in Eq. (3), now
depends on urelj j and reads,

Gi ¼ ckρϕ kh ii urelj j=
ffiffiffiffi
K

p
: ð18Þ

A corresponding transport equation for 〈ε〉i, incorporating also the
relative velocity urelj j, can be written as,

ρ
∂
∂t ϕ εh ii

� �
þ∇ � uD εh ii

� �� �
¼ ∇ � μ þ

μ tϕ

σε

� �
∇ ϕ εh ii
� �� �

þ c1 −ρ u′u′
D Ei

: ∇uD

� �
εh ii
kh ii þ c2ckρ

ϕ εh ii urelj jffiffiffiffi
K

p −c2 f 2ρϕ
εh ii2

kh ii

ð19Þ

where σε, c1 and c2 are constants and f2 is a damping function.
Table 2
Cases and parameters used (High Reynolds turbulence model, Launder and Spalding [13]).

Cases investigated Dimensional

uD [m/s] us [m/s] urel [m/s] D [m] K [m2]

Effect of ReD 4.250E01 2.125E01 2.125E01 8.00E−03 1.000E−
2.120E02 1.062E02 1.062E02
4.250E02 2.125E02 2.125E02
4.250E03 2.125E03 2.125E03

Effect of us/uD 4.250E02 0.000E00 4.250E02 8.00E−03 1.000E−
1.062E02 3.188E02
2.125E02 2.125E02
3.187E02 1.063E02
4.037E02 2.125E01

Effect of Da 4.250E02 2.125E02 2.125E02 1.00E−03 1.562E−
3.00E−03 1.406E−
1.00E−02 1.562E−

Effect of ϕ 2.120E02 1.062E02 1.062E02 8.00E−03 1.975E−
3.50E−03 1.000E−
1.30E−03 7.111E−

Table 3
Cases and parameters used (Low Reynolds turbulence model, Abe et al. [14]).

Cases investigated Dimensional

uD [m/s] us [m/s] urel [m/s] D [m] K [m2]

Effect of ReD 5.312E00 2.656E00 2.656E00 8.00E−03 1.000E−
1.062E01 5.312E00 5.312E00
2.125E01 1.062E01 1.062E01

Effect of us/uD 1.190E01 0.000E00 1.190E01 8.00E−03 1.000E−
2.975E00 8.925E00
5.950E00 5.950E00
8.925E00 2.975E00

Effect of Da 3.400E01 1.700E01 1.700E01 1.00E−03 1.562E−
3.00E−03 1.406E−
1.00E−02 1.562E−

Effect of ϕ 1.062E01 5.312E00 5.312E00 8.00E−03 1.975E−
3.50E−03 1.000E−
1.30E−03 7.111E−
2.3. Wall treatment and boundary conditions

In this work, two forms of the k–ε model are employed, namely the
High Reynolds and Low Reynolds number turbulence models. For the
High Reynolds turbulence model, a macroscopic form of the standard
k–ε closure was used (Launder and Spalding [13]) whereas for the Low
Reynolds number model constants and damping functions of Abe et al.
[14] were applied. All model constants and damping functions for both
turbulence models are compiled in Table 1.

Boundary conditions are given by:

On the solid walls (Low Reynolds turbulence model):

u ¼ 0; k ¼ 0; ε ¼ ν
∂2k
∂y2

: ð20Þ

On the solid walls (High Reynolds turbulence model):

u
uτ

¼ 1
κ

ln yþE
� �

; k ¼ u2
τ

c1=2μ

; ε ¼ c3=4μ k3=2w

κyw
ð21Þ

with, uτ ¼ τw
ρ

� �1=2
, yþw ¼ ywuτ

ν , where uτ is the wall-friction velocity,
yw is the non-dimensional coordinate normal to wall, к is the von
Kármán constant, and E is a constant that depends on the roughness
of the wall. For smooth walls, E = 9.
On the entrance:

uD ¼ uinlet ð22Þ

At the exit, zero diffusion flux is considered for all variables.
Non-dimensional

ReD Re us/uD Da ϕ y+

06 1.00E04 1.938E05 5.0E−01 1.665E−04 0.6 1.119E01
5.00E04 1.938E06 4.762E01
1.00E05 3.875E06 9.104E01
1.00E06 3.875E07 8.267E02

06 2.00E05 3.875E06 0.0E00 1.665E−04 0.6 1.840E02
1.50E05 2.5E−01 1.351E02
1.00E05 5.0E−01 9.105E01
5.00E04 7.5E−01 6.234E01
1.00E04 9.5E−01 6.137E01

08 1.25E04 3.875E06 5.0E−01 2.601E−06 0.6 1.170E02
07 3.75E04 2.341E−05 1.081E02
06 1.25E05 2.601E−04 8.690E01
07 5.00E04 1.938E06 5.0E−01 3.289E−05 0.4 5.867E01
06 1.665E−04 0.6 4.762E01
06 1.184E−03 0.8 3.600E01

Non-dimensional

ReD Re us/uD Da ϕ y+

06 1.25E03 4.844E04 5.0E−01 1.665E−04 0.6 1.72E00
2.50E03 9.688E04 2.88E00
5.00E03 1.938E05 4.68E00

06 5.60E03 1.085E05 0.0E00 1.665E−04 0.6 1.86E00
4.20E03 2.5E−01 1.80E00
2.80E03 5.0E−01 1.72E00
1.40E03 7.5E−01 1.58E00

08 1.00E03 3.100E05 5.0E−01 2.601E−06 0.6 3.25E00
07 3.00E03 2.341E−05 3.65E00
06 1.00E04 2.601E−04 4.78E00
07 2.50E03 9.688E04 5.0E−01 3.289E−05 0.4 3.19E00
06 1.665E−04 0.6 3.18E00
06 1.184E−03 0.8 3.20E00
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3. Numerical method

The numerical method used to discretize the flow equations was
based on the control volume approach. A schematic of node labeling
for a general non-orthogonal two-dimensional grid is presented in
Fig. 1b. The SIMPLE method of Patankar [15] was used to the handle
the pressure–velocity coupling and applied to relax the systems of alge-
braic equations.

The discretized form of the two-dimensional conservation equation
for a generic property φ in steady-state reads,

Ie þ Iw þ In þ Is ¼ Sφ ð23Þ

where Ie, Iw, In and Is represent, respectively, the fluxes of φ in
the east, west, north and south faces of the control volume. Sφ repre-
sents the source term, whose standard linearization is accomplished
by making,

Sφ≈ S��φ φh iip þ S�φ: ð24Þ
x/L

k/
u2 D

in

0 0.2 0.4 0.6 0.8 1

10-2

10-1

100

101

102

103

ReD=104

ReD=5x104

ReD=105

ReD=106

x/L

k/
u2 D

in

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

ReD=1250
ReD=2500
ReD=5000

a)

b)

Fig. 2. Non-dimensional turbulent kinetic energy as a function of ReD, with us/uD = 0.5,
ϕ = 0.6: a) High Reynolds model and b) low Reynolds model.
Discretization of the momentum equation in the x-direction gives
further,

S�x ¼ S�xe

 �

P− S�xw

 �

P þ S�xn

 �

P− S�xs

 �

P þ S�P ð25Þ

S��x ¼ S��ϕ ð26Þ

where, S⁎x is the diffusive part, here treated in an explicit form. The
second term, S⁎⁎x, entails the additional drag forces due to the porous
matrix, which are here treated explicitly.

Convergence was monitored in terms of the normalized residue,
which was set to be lower than 10−9.

4. Results and discussion

As mentioned, the problem under investigation is turbulent flow
through a channel completely filled with a moving layer of a porous
material, as shown in Fig. 1a. Data for all runs for moving bed cases
are detailed in Tables 2 and 3.
x/L

k/
u2 D

in

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

us/uD=0.0
us/uD=0.25
us/uD=0.50
us/uD=0.75
us/uD=0.95

x/L

k/
u2 D

in

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

us/uD=0.0
us/uD=0.25
us/uD=0.50
us/uD=0.75

a)

b)

Fig. 3. Non-dimensional turbulent kinetic energy as a function of us/uD, with ks/kf = 25,
ϕ = 0.6, Da = 1.665 × 10−4: a) High Reynolds model ReD ≈ 105, and b) Low Reynolds
model ReD ≈ 1013.
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4.1. Effect of Reynolds number, ReD

The Reynolds number ReD was calculated based on relative velocity
urel for high and low Reynolds models. It is noticed that when Darcy ve-
locity uD increases while keeping the same porosity and slip ratio, there
is an increase in the relative velocityurel (see Tables 2 and 3). According-
ly, Fig. 2a and b shows thatwhen the relative velocity increases, a great-
er amount of mean mechanical energy is converted into turbulence,
regardless of the turbulence model used. Or say, as the relative fluid ve-
locity increases past the solid obstacles, the amount of fluid disturbance
is increased leading to an increase in the final level of 〈k〉i. That can be
seen by inspecting the generation term Gi ¼ ckρϕ kh ii urelj j=

ffiffiffiffi
K

p
that is

proportional to urel.

4.2. Effect of slip ratio, us=uD

Fig. 3a and b indicates the damping of turbulence as the solid veloc-
ity approaches that of the flowing fluid. As the relative velocity urel

decreases, the amount of disturbances in the flow is reduced, implying
x/L

k/
u2 D

in

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

Da = 2.60x10-6

Da = 2.34x10-5

Da = 2.60x10-4

x/L

k/
u2 D

in

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

Da = 2.601x10-6

Da = 2.341x10-5

Da = 2.601x10-4

a)

b)

Fig. 4. Non-dimensional turbulent kinetic energy as a function of Da, with us/uD = 0.5,
ϕ = 0.6: a) High Reynolds model, Re = 3.875 × 106; and b) Low Reynolds model,
Re = 3.1 × 105.
then in a reduction of the final level of 〈k〉i, according to Gi for both
High and Low Reynolds number models.

4.3. Effect of Darcy number, Da

Fig. 4 shows the distribution of turbulence kinetic energy with
variation of Darcy number. It is notice that as Darcy number in-
creases, the intensity of the turbulence kinetic energy inside of the
porous layer decreases, mainly next to the entrance, staying constant
along the channel after x/L = 0.15 for High (Fig. 4a) and Low Reynolds
(Fig. 4b) models.

4.4. Effect of porosity, ϕ

Fig. 5 shows the values for non-dimensional turbulent kinetic energy
along the channel as a function of porosity ϕ and for both turbulence
models here employed. The Reynolds number, ReD, and the velocity
ratio between the solid and fluid phases, us/uD = 0.5, are kept constant
for all curves in the figure.
x/L

k/
u

2 D
in

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

φ=0.4
φ=0.6
φ=0.8

L/x

k/
u

2 D
in

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

φ=0.4
φ=0.6
φ=0.8

a)

b)

Fig. 5. Non-dimensional turbulent kinetic energy as a function of ϕ, with us/uD = 0.5:
a) High Reynolds model, ReD = 5 × 104; and b) Low Reynolds model ReD = 2.5 × 103.



7A.C. Pivem, M.J.S. de Lemos / International Communications in Heat and Mass Transfer 48 (2013) 1–7
For a fixed Reynolds number based on uD ¼ ϕ uh ii , a decrease in
porosity corresponds to an increase in the intrinsic fluid velocity
uh ii, reflecting a greater conversion of mean mechanical kinetic en-
ergy into turbulence. It is also observed that as the porosity gets
lower, while keeping both velocities constant, the permeability K
decreases leading to an increase in the final level of 〈k〉i according
to Gi (see Eq. (18)), which is, as seen, the generation rate of 〈k〉i due
the porous substrate.

5. Conclusions

This paper investigated the behavior of turbulent kinetic energy in a
concurrent moving porous bed. Numerical solutions for turbulent flow
were obtained for different Reynolds number, ReD, slip ratio, us/uD,
Darcy number,Da andporosityϕ. Governing equationswere discretized
and numerically solved.

It is observed, according with the results obtained, that for high
values of ReD, higher final levels of 〈k〉i are simulated, as expected.
The same effect occur for lower values of slip ratious=uD, Darcy num-
ber Da and porosity ϕ, or say, for smaller values of these parameters,
higher levels of 〈k〉i are computed. Results herein might be useful to the
design and analysis of a number of engineering processes of practical
interest.
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