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computed.

This paper deals with numerical simulation of turbulence in a parallel flow moving bed, in which turbulence is
considered in the void spaces occupied by the fluid phase. Volume averaging techniques are applied to both
time-mean and statistical flow fields. The set of resulting governing equations is discretized via the control-
volume method and the resulting algebraic equation set is solved via the SIMPLE method. Results indicate that
for lower values of slip ratio, Darcy number and bed porosity, higher levels of turbulence kinetic energy are

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Many applications in industry are concerned with turbulent flow
through permeable beds. Examples are found in devices such as gasifiers,
in chemical separation equipment and in recuperation of petrochemical
processes, to mention a few applications. Within this context, Yang [1]
showed numerical simulation of turbulent fluid flow and heat transfer
characteristics in heat exchangers fitted with a porous medium, where
the permeable material was inserted in a heat exchanger to improve its
process performance. Ref. [1] applied the k-& model to handle turbulence.
Further, among many studies reporting results on turbulent gas-solid
transport, one can mention the one by Littman et al. [2], who showed
the effect of particle diameter, particle density and loading ratio on the
drag coefficient in steady turbulent gas-solid transport, Mansoori et al.
[3], who presented a thermo-mechanical modeling for turbulence heat
transfer in gas-solid flows including particle collisions and Zhang and
Reese [4], who studied particle-gas turbulence interactions using a
kinetic theory approach applied to granular flows.

Recently, a macroscopic model for turbulence in porous media
was proposed and applied to a number of flows including thermal equi-
librium [5] as well as non-equilibrium [6] between temperatures of the
fixed solid and fluid phases. For cases when the solid phase also moves,
computations for turbulent flow were also presented in de Lemos and
Saito [7], but therein their study was limited to the investigation of
the effect of the relative velocity on the statistical field. In addition, lam-
inar flow and heat transfer studies in a moving porous bed in parallel [8]
and in counter flow [9] configurations were also published. In [8,9],
a broader study presented the effects of Reynolds number, slip ratio,
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porosity and permeability of the medium on heat transfer, but only lam-
inar flow was therein investigated.

Therefore, the purpose of this contribution is to extend the work
of [7] on turbulent moving beds, including now a variety of effects
shown previously only for laminar flows [8,9], namely the effect of
Reynolds number, slip ratio, porosity and permeability of the medium.
Here, the focus is on the impact on the levels of turbulent kinetic energy
when several flows and medium properties are varied. Further, two tur-
bulence models are here employed, namely the High and Low Reynolds
number formulations.

2. Macroscopic model for flow equations

The equations to follow are available in the open literature and for
that their derivation is not repeated here [6]. The geometry considered
in this work is schematically shown in Fig. 1a. A moving porous bed
co-flows with a permeating fluid and both, the solid matrix as well as
the working fluid, move in the same west-to-east direction. The channel
shown in the figure has length and height given by L and H, respectively.
For the sake of completeness, equations for both fixed and moving me-
dium are presented below.

2.1. Fixed bed

A macroscopic form of the governing equations is obtained by taking
the volumetric average of the entire equation set. In this development,
the porous medium is considered to be rigid, fixed and saturated by the
incompressible fluid. The final forms of the equations considered here
are given by [6]:

Continuity:

V.U, =0 (1)
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Nomenclature

A;

Interfacial area [m?]

a; Interfacial area per unit volume, a; = A;/AV [m™!]

Cr Forchheimer coefficient

Cx Non-dimensional turbulence model constant

c's Model constants

D Particle diameter [m]

D Deformation rate tensor, D = [Vu + (Vu)']/2 [s7']

f Damping function

fu Damping function

G Production rate of (k)' due to the porous matrix

H Distance between channel walls [m]

k Turbulent kinetic energy per unit mass [m?/s?]

(k! Intrinsic (fluid) average of k

kY Volume (fluid + solid) average of k

K Permeability [m?]

L Channel length [m]

p Thermodynamic pressure [N/m?]

(p) Intrinsic (fluid) average of pressure p [N/m?]

Re Reynolds number based on up

Rep Reynolds number based on 4,

u Microscopic time-averaged velocity vector [m/s]

(ﬁ)i Intrinsic (fluid) average of w [m/s]

up Darcy velocity vector, tp = ¢(u)' [m/s]

[T Relative velocity based on total volume, U,y = Up—us
[mys]

u- Velocity shear stress [m/s]

X Dimensionless coordinate

yt Dimensionless distance between the wall and first grid
node, y* = Yu=

Greek

£ Dissipation rate of , & = uvu' : (Vu')" /p [m?/s?]

(g)f Intrinsic (fluid) average of ¢

1) Porosity

v Phase identifier

u Fluid dynamic viscosity [kg/(m s)]

e Turbulent viscosity [kg/(m s)]

He, Macroscopic turbulent viscosity [kg/(m s)]

v Kinematic viscosity [m?/s]

p Density [kg/m’]

Oy, O Non-dimensional constants

Subscript

s, f s = solid, f = fluid

Momentum:

p{V. (ﬁlfDﬂ ) +uV2ﬁD L V. (—p¢><ﬁ>‘) 2)

%ﬁn + Crdplup Uy
VK

Turbulent kinetic energy:

o (Bot)) = 9| (e 52) 9 (800') | + P+ G piie) 3

My,
O

Dissipation rate of turbulence kinetic energy:

)= [ ]
v (G—poie) @)

where u) is the Darcy velocity vector, up = d)(ﬁ)i. ¢ is the porosity, p is
the density of the fluid, p is the pressure, uis the fluid dynamic viscosity,
K is the medium permeability, cr is the Forchheimer coefficient, ;, is
the macroscopic turbulent viscosity, Ok and o, are constants, (k) is the
intrinsic (fluid) average of k and (g)' is the intrinsic dissipation rate

of (k) & = uvu' : (Vi')"/p. In Eq. (4), ¢; and ¢, are constants, P' =

—p<ﬁ>l : Vlp is the production rate of (k)' due to gradients of

tp and G = ckp(j)(k)i|ﬁp\/ﬁ is the generation rate of the intrinsic
average of k due to the action of the porous matrix (see [6] for
details).

2.2. Moving bed

For a moving bed, only cases where the solid phase velocity is kept
constant will be considered here, or say, we assume a moving bed
with constant velocity that crosses a fixed control volume in addition
to a co-flowing fluid. The steps below show first some basic definitions
prior to presenting a proposal for a set of transport equations for analyz-
ing moving systems.

A general form for a volume-average of any property ¢, distributed
within a phase <y that occupies volume AV, can be written as (Gray
and Lee [10], Whitaker [11,12]),

@ = 5y [ vy, 5)
yAV

y

In the general case, the volume ratio occupied by phase y will be
¢ = AV,/AV where AV is the volume of the so-called “Representative
Elementary Volume”, REV. If there are two phases, a solid y = s and a
fluid phase y = f, volume average can be established on both regions.
Also,

¢’ = AV/AV = 1—AV/AV = 1—¢/ (6)
and for simplicity of notation one can drop the superscript “f” to get
¢ =1—¢. (7

As such, calling the instantaneous local velocities for the solid and
fluid phases, us and u, respectively, one can obtain the average for the
solid velocity, within the solid phase, as follows,

W' =g [ wav, ®)
SAV

with, in turn, can be related to an average velocity referent to the entire
REV as,

A further approximation herein is that the porous bed is rigid and
moves with a steady average velocity u,. Note that the condition of
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Fig. 1. a) Porous bed reactor with a moving solid matrix; and b) control volume notation.

steadiness for the solid phase gives us = s = const where the overbar
denotes, as usual in the literature, time-averaging.

For the fluid phase, the intrinsic (fluid) volume average gives, after
using the subscript “i” also for consistency with the literature,

@ - Aivf / wdv,. (10)

AV
Both velocities can then be written as,
1) = o), u; = (1—¢)(u)’ = const. (11)
A relative velocity is then defined as,
U, =up—u,. (12)

In addition, a relative Reynolds number based on u,,; and D can be
defined as:

Rep :p—‘“ﬁ”D. (13)

Further, if one uses the Darcy velocity and the overall reactor size H,
one has a different definition for Reynolds given by,

Re — % (14)

Incorporating now in Eq. (2) a model for the Macroscopic Reynolds

i
Stresses —p¢<u’u’> , and assuming that a relative movement between

the two phases is described by Eq. (12), the momentum equation reads
(see [6,7] for details),

p{V~ <?>}—v-{(um%)[Vﬁﬁ(VﬁD)T]} (15)

=\ 1 —= c u, ﬁre'
= —V<¢<P> )—‘;—j’um +%

where y; s the macroscopic eddy viscosity given by

H, = PGSy <<’;—>> (16)

being ¢, a dimensionless constant and f, a damping function, which
differs from unit if a Low-Reynolds turbulence model is applied.
More on damping functions and model constants will be shown
below. Thus, to obtain the eddy viscosity, K, we used here the

Low and High Reynolds number k-& models, whose equations for
the turbulent kinetic energy and its dissipation rate, incorporating
now a relative movement between the two phases [u,,|, are given
next [7].

A transport equation for (k) can be written as,

p[7 - (Bot')] = 7+ (w52 ) v (o) (17)
—p(uw)':va + ckp% —pde)’
Gi
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Table 1
Damping functions and constants for High and Low Reynolds turbulence models.

High Reynolds model
proposed by Launder
and Spalding [13]

Low Reynolds model proposed by Abe et al. [14]

2
(vg)*? 2 K /ve
B0 e[ o) i g e (4]}
. 2 200\ 2
B feel ey frosee] (45}
Ol 1.0 14
O, 133 13
1 1.44 1.5
6 1.92 19

where o0y and ¢, are dimension_less constants and the generation rate
due to the porous substrate, G', which was included in Eq. (3), now
depends on |u,,;| and reads,
G = (k) [d,g|/VK. (18)

A corresponding transport equation for (¢, incorporating also the
relative velocity |u,|, can be written as,

plgr (0661 + 7 (@) = - (22 ) v (010

&€

2.3. Wall treatment and boundary conditions

In this work, two forms of the k-¢ model are employed, namely the
High Reynolds and Low Reynolds number turbulence models. For the
High Reynolds turbulence model, a macroscopic form of the standard
k-¢ closure was used (Launder and Spalding [13]) whereas for the Low
Reynolds number model constants and damping functions of Abe et al.
[14] were applied. All model constants and damping functions for both
turbulence models are compiled in Table 1.

Boundary conditions are given by:

On the solid walls (Low Reynolds turbulence model):

On the solid walls (High Reynolds turbulence model):

_ 3/4,,3/2
T 1 N u? ok

—=_In(y'E) k== =" 21
u- K ( ) C:l/z KYw ( )

. 1/2 . s .
with, u, = (%W) / . Yw =22, where u is the wall-friction velocity,

Yw is the non-dimensional coordinate normal to wall, k is the von
Karman constant, and E is a constant that depends on the roughness
of the wall. For smooth walls, E = 9.

On the entrance:

. . 2
i o ) @) D(&)' [U @'
+ Cl( p(uw) ‘V“D> i PO b Up = Uy (22)
where o, ¢; and c; are constants and f; is a damping function. At the exit, zero diffusion flux is considered for all variables.
Table 2
Cases and parameters used (High Reynolds turbulence model, Launder and Spalding [13]).
Cases investigated Dimensional Non-dimensional
up [m/s] us [m/s] Ure [M/S] D [m] K[m?] Rep Re Us/up Da ] y+
Effect of Rep 4.250E01 2.125E01 2.125E01 8.00E—03 1.000E —06 1.00E04 1.938E05 5.0E—01 1.665E — 04 0.6 1.119E01
2.120E02 1.062E02 1.062E02 5.00E04 1.938E06 4.762E01
4.250E02 2.125E02 2.125E02 1.00E05 3.875E06 9.104E01
4.250E03 2.125E03 2.125E03 1.00E06 3.875E07 8.267E02
Effect of ug/up 4.250E02 0.000E00 4.250E02 8.00E—03 1.000E —06 2.00E05 3.875E06 0.0E00 1.665E — 04 0.6 1.840E02
1.062E02 3.188E02 1.50E05 2.5E-01 1.351E02
2.125E02 2.125E02 1.00E05 5.0E—01 9.105E01
3.187E02 1.063E02 5.00E04 7.5E—01 6.234E01
4.037E02 2.125E01 1.00E04 9.5E—01 6.137E01
Effect of Da 4.250E02 2.125E02 2.125E02 1.00E—03 1.562E—08 1.25E04 3.875E06 5.0E—01 2.601E—06 0.6 1.170E02
3.00E—-03 1.406E—07 3.75E04 2.341E—-05 1.081E02
1.00E—02 1.562E—06 1.25E05 2.601E—04 8.690E01
Effect of ¢ 2.120E02 1.062E02 1.062E02 8.00E—03 1.975E—07 5.00E04 1.938E06 5.0E—01 3.289E—05 04 5.867E01
3.50E—-03 1.000E — 06 1.665E — 04 0.6 4.762E01
1.30E—-03 7.111E—06 1.184E—03 0.8 3.600E01
Table 3
Cases and parameters used (Low Reynolds turbulence model, Abe et al. [14]).
Cases investigated Dimensional Non-dimensional
up [mys] us [m/s] U [m/s]  D[m] K [m?] Rep Re ug/up Da ¢ y+
Effect of Rep 5.312E00 2.656E00 2.656E00 8.00E—03 1.000E—06 1.25E03 4.844E04 5.0E—01 1.665E —04 0.6 1.72E00
1.062E01 5.312E00 5.312E00 2.50E03 9.688E04 2.88E00
2.125E01 1.062E01 1.062E01 5.00E03 1.938E05 4.68E00
Effect of uy/up 1.190E01 0.000E00 1.190E01 8.00E—03 1.000E—06 5.60E03 1.085E05 0.0E00 1.665E —04 0.6 1.86E00
2.975E00 8.925E00 4.20E03 2.5E—-01 1.80E00
5.950E00 5.950E00 2.80E03 5.0E—01 1.72E00
8.925E00 2.975E00 1.40E03 7.5E—01 1.58E00
Effect of Da 3.400E01 1.700E01 1.700E01 1.00E—03 1.562E—08 1.00E03 3.100E05 5.0E—01 2.601E—06 0.6 3.25E00
3.00E—03 1.406E —07 3.00E03 2341E—-05 3.65E00
1.00E—02 1.562E—06 1.00E04 2.601E—04 4.78E00
Effect of ¢ 1.062E01 5.312E00 5.312E00 8.00E—03 1.975E—07 2.50E03 9.688E04 5.0E—01 3.289E—05 04 3.19E00
3.50E—03 1.000E — 06 1.665E—04 0.6 3.18E00
1.30E—03 7.111E—-06 1.184E—03 0.8 3.20E00
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3. Numerical method

The numerical method used to discretize the flow equations was
based on the control volume approach. A schematic of node labeling
for a general non-orthogonal two-dimensional grid is presented in
Fig. 1b. The SIMPLE method of Patankar [15] was used to the handle
the pressure-velocity coupling and applied to relax the systems of alge-
braic equations.

The discretized form of the two-dimensional conservation equation
for a generic property ¢ in steady-state reads,

Lo+ 1, +1 +1;=S, (23)

where [, I, I, and I; represent, respectively, the fluxes of ¢ in
the east, west, north and south faces of the control volume. S, repre-
sents the source term, whose standard linearization is accomplished
by making,

So ™ Sy (@) + So- (24)

R e L R S e 2 B2

10°P =
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Fig. 2. Non-dimensional turbulent kinetic energy as a function of Rep, with ug/up = 0.5,
¢ = 0.6: a) High Reynolds model and b) low Reynolds model.

Discretization of the momentum equation in the x-direction gives
further,

ST = (S)p—(Sw)p+ (Sn)p—(S)p +Sp (25)

where, S is the diffusive part, here treated in an explicit form. The
second term, S, entails the additional drag forces due to the porous
matrix, which are here treated explicitly.

Convergence was monitored in terms of the normalized residue,
which was set to be lower than 10~°.

4. Results and discussion
As mentioned, the problem under investigation is turbulent flow
through a channel completely filled with a moving layer of a porous

material, as shown in Fig. 1a. Data for all runs for moving bed cases
are detailed in Tables 2 and 3.

a)

—+&— u/uy,=0.0 ]

— —A— - u/u,=025 7

—-€—-- u/u,=0.50 g

0.6 —-v—- Uu/u,=075| _|
—=r—- ufu,=0.95 |
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04 .

V-V—F—V—V -V ¥ ¥ ¥ ¥-¥—F-V-V -V ¥ ¥ ¥ ¥
AN PO MOODSOOCHGGOOIOSGGC
0 0.2 0.4 0.6 0.8 1
x/L

—+8— u/u,=0.0
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Fig. 3. Non-dimensional turbulent kinetic energy as a function of uy/up, with ks/kf = 25,
¢ = 0.6, Da = 1.665 x 10~*: a) High Reynolds model Re,, ~ 10°, and b) Low Reynolds
model Rep ~ 10,
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4.1. Effect of Reynolds number, Rep,

The Reynolds number Rep was calculated based on relative velocity
u,, for high and low Reynolds models. It is noticed that when Darcy ve-
locity up increases while keeping the same porosity and slip ratio, there
is anincrease in the relative velocity u,,; (see Tables 2 and 3). According-
ly, Fig. 2a and b shows that when the relative velocity increases, a great-
er amount of mean mechanical energy is converted into turbulence,
regardless of the turbulence model used. Or say, as the relative fluid ve-
locity increases past the solid obstacles, the amount of fluid disturbance
is increased leading to an increase in the final level of (k). That can be
seen by inspecting the generation term G' = cyod (k) [lq|/VK that is
proportional to U,.

4.2. Effect of slip ratio, us/up
Fig. 3a and b indicates the damping of turbulence as the solid veloc-

ity approaches that of the flowing fluid. As the relative velocity U,
decreases, the amount of disturbances in the flow is reduced, implying

— 55— Da=260x10°| |
o1l — —-A— - Da=234x10%|
) ———) = Da=2.60x10"* 1
o5 i i
2 F ?
0.1 ?2 7
3 i
r i
0.05 - ]
S N T R /
0 0.2 0.4 0.6 0.8 1

x/L

—8— Da=2.601x10° 1

——A—— Da=2.341x10" 1

0.15 —&— Da=2601x10"| -

w8 ]

: .

2 ]

0.1 -
0.059

0 - - - - i

0 0.2 04 0.6 0.8 1

x/L

Fig. 4. Non-dimensional turbulent kinetic energy as a function of Da, with us/up = 0.5,
¢ = 0.6: a) High Reynolds model, Re = 3.875 x 105 and b) Low Reynolds model,
Re = 3.1 x 10°.

then in a reduction of the final level of (k)!, according to G' for both
High and Low Reynolds number models.

4.3. Effect of Darcy number, Da

Fig. 4 shows the distribution of turbulence kinetic energy with
variation of Darcy number. It is notice that as Darcy number in-
creases, the intensity of the turbulence kinetic energy inside of the
porous layer decreases, mainly next to the entrance, staying constant
along the channel after x/L = 0.15 for High (Fig. 4a) and Low Reynolds
(Fig. 4b) models.

4.4. Effect of porosity, &

Fig. 5 shows the values for non-dimensional turbulent kinetic energy
along the channel as a function of porosity ¢ and for both turbulence
models here employed. The Reynolds number, Rep, and the velocity
ratio between the solid and fluid phases, us/up = 0.5, are kept constant
for all curves in the figure.

a)

oF
3 .
® | i
02} A A bhA—A A A A A bbb AbA—bdAAA A A Ass
’ A ]
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0.1 -
P hcacacaCiSECaCaCACEO DS DR O AT s
& ]
0 L1 L1 L1 L1 i
0 0.2 0.4 0.6 0.8 1
x/L
06 T T T T T
05 ;
0.4 —8— =04 4
— —A— - ¢=0.6 1
——- $=0.8 i
~B 1
S 03 ]
= ]
0o achAA-AA & &b bbirhdAdssssa-d
4 ]
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ESISASACaSACaSICNCTRTIC SCIC O SIS ESICAC It
0 T - T - T T i
0 0.2 0.4 0.6 0.8 1

L/x

Fig. 5. Non-dimensional turbulent kinetic energy as a function of ¢, with ug/up = 0.5:
a) High Reynolds model, Rep = 5 x 10% and b) Low Reynolds model Re, = 2.5 x 10°.
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For a fixed Reynolds number based on ip = ¢ (@), a decrease in
porosity corresponds to an increase in the intrinsic fluid velocity
(u)', reflecting a greater conversion of mean mechanical kinetic en-
ergy into turbulence. It is also observed that as the porosity gets
lower, while keeping both velocities constant, the permeability K
decreases leading to an increase in the final level of (k) according
to G' (see Eq. (18)), which is, as seen, the generation rate of (k)' due
the porous substrate.

5. Conclusions

This paper investigated the behavior of turbulent kinetic energy in a
concurrent moving porous bed. Numerical solutions for turbulent flow
were obtained for different Reynolds number, Rep, slip ratio, us/up,
Darcy number, Da and porosity ¢. Governing equations were discretized
and numerically solved.

It is observed, according with the results obtained, that for high
values of Rep, higher final levels of (k) are simulated, as expected.
The same effect occur for lower values of slip ratio us /up, Darcy num-
ber Da and porosity ¢, or say, for smaller values of these parameters,
higher levels of (k)' are computed. Results herein might be useful to the
design and analysis of a number of engineering processes of practical
interest.
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