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This study investigates the influence of physical properties on heat transfer between solid and fluid phases
in a cross flow moving porous bed, in which the fluid moves with longitudinal and transversal components
with respect to the permeable bed. For simulating flow and heat transfer, a two-energy equation model is
applied in addition to a mechanical model. Transport equations are discretized using the control-volume
method and the system of algebraic equations is relaxed via the SIMPLE algorithm. The effects of flow
properties, such as Reynolds number, solid-to-fluid velocity ratio, permeability and porosity, as well as
the effects of thermal properties, namely solid-to-fluid thermal capacity and solid-to-fluid thermal con-
ductivity ratio, are analyzed. The numerical results show that the Reynolds number affects strongly the
flow behavior and for high values of the solid-to-fluid velocity ratio, solid-to-fluid thermal capacity ratio
and solid-to-fluid thermal conductivity ratio, there is a decrease in temperature gradients everywhere in
the domain and the fluid temperature reaches higher values mainly in the symmetry region of the channel.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Among design concepts for moving bed equipment, the cross
flow configuration has been used in many engineering equipment.
Moving bed technology has wide application on devices and
processes such as heat exchangers, evaporators, inter-cool-
ers, pre-heaters, condensers, drying of grains and seeds, among
others.

The crossflow configuration can happen among fluids or be-
tween fluid and solid, as in the case of moving bed, where in this
configuration, the fluid phase is in perpendicular direction with
that of the solid phase.

With the respect of the crossflow moving bed heat exchangers,
Zhao et al. [1] simulate a moving granular bed for combined hot
gas desulfurization with dust removal, Lozano et al. [2] shows
the modeling of a new crossflow moving bed heat exchanger filter
and Almendros-Ibáñez et al. [3] presents a theoretical study of the
energetic performance of a moving bed heat exchanger, which con-
sists of a flow and solid particles moving downwards, which recov-
ered heat from a gas flow percolating a solid phase in crossflow.

In accompanying papers, co-current [4] as well as counter flows
[5] in moving porous beds were investigated using a two-equation
approach for handling thermal-non-equilibrium [6]. In [4,5] a
model for treating the movement of the solid phase was employed
[7]. Therein, only aligned flow cases were investigated, or say, the
movement of the solid porous matrix was aligned with that of the
working fluid. For co-current configurations, both phases had
speed with the same sign whereas in counter-flow configurations
the fluid and solid moved on opposing directions to each other.

The objective of the present contribution is to extend the previ-
ous analysis of parallel [4] and counter flows [5], which used the
energy model of [6,7], to investigate now cross-flow configura-
tions. Here, the fluid phase flows in a direction not aligned with
the steadily moving solid matrix. By that, a number of engineering
flows of practical relevance can be evaluated such as flow in down-
draft crossflow gasifiers and in equipment for advanced materials
production. As such, the results to be shown below may benefit
the design and analysis of engineering equipment used in gasifica-
tion processes and for manufacturing advanced materials.

1.1. Macroscopic model for flow equations

The equations to follow are available in the open literature and
for that their derivation are not repeated here [8]. Further, before
transport equations for the moving bed cases are presented, the
mathematical model for a fixed bed are shown for the sake of
completeness.

1.2. Fixed bed

A macroscopic form of the governing equations is obtained by
taking the volumetric average of the entire equation set. In this
development, the porous medium is considered to be rigid, fixed
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Nomenclature

Ai interfacial area
ai interfacial area per unit volume
cF Forchheimer coefficient
cp specific heat
D particle diameter
D deformation rate tensor, D = [ru + (ru)T]/2
H distance between channel walls
hi interfacial heat transfer coefficient
K permeability
Keff effective thermal dispersion tensor
ks/kf thermal conductivity ratio
L channel length
p thermodynamic pressure
hpii intrinsic (fluid) average of pressure p
Re Reynolds number, ReH ¼ quDin

2H=l, ReD = q|urel|D/l

hTfi fluid temperature
hTsi solid temperature
u microscopic velocity vector
huii intrinsic (fluid) average of u
uD Darcy velocity vector, uD ¼ / huii
uDî Darcy velocity component in the direction x
urel relative velocity based on total volume
vDĵ Darcy velocity component in the direction y
Greek
c phase identifier
l fluid dynamic viscosity
q density
/ porosity
Subscript
s,f s = solid, f = fluid
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Fig. 2. Control volume and notation.
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and saturated by an incompressible fluid. As mentioned, derivation
of this equation set is already available in the literature [8] so that
details need not to be repeated here. Nevertheless, for the sake of
completeness, the final laminar incompressible form of the
equations is here presented:

Continuity:

r � uD ¼ 0 ð1Þ

Momentum:

q
@uD

@t
þr � uD uD

/

� �� �
¼ �r /h�pii

� �
þ lr2uD

� l/
K

uD þ
cF/qjuDjuDffiffiffiffi

K
p

� �
; ð2Þ

where the last two terms in Eq. (2) represent the Darcy and Forchhei-
mer contributions, respectively. The quantity / = DVf/DV in Eq. (2)
that represents the volume ratio occupied by the fluid, here named
porosity, is sometimes referred to in the literature as voidage.
(a)

(c) (d)

(b)

Fig. 1. Porous bed reactor with a moving solid matrix: (a,b) crossflow with fluid moving southwest to northeast (geometry turned 90 degrees counterclockwise); (c) flow
configurations with uD/us = 1; (d) flow configurations with uD/vD = 1.
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Fig. 3. Dimensional temperatures as a function of ReD; us/VD = 0.5, / = 0.9, ks/kf = 25, Da = 3.37 � 10�3, (qcp)s/(qcp)c = 1.5: (a) streamlines, (b) fluid temperature, (c) solid
temperature.
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1.3. Moving bed

When the solid phase moves in relation to the fluid phase, only
cases where the porous matrix speed is kept constant will be con-
sidered here, or say, we consider a moving bed that crosses a fixed
control volume in addition to a flowing fluid, which is not neces-
sarily moving with a velocity aligned with the solid phase velocity.
For the sake of clarity, the steps below show some basic definitions
prior to presenting a proposal for a set of transport equations for
analyzing such systems.

A general form for a volume-average of any property u, distrib-
uted within a phase c that occupy volume DVc, can be written as
[9,10],

huic ¼ 1
DVc

Z
DVc

udVc ð3Þ

In the general case, the volume ratio occupied by phase c will be
uc = DVc/DV.

If there are two phases, a solid c = s and a fluid phase c = f, vol-
ume average can be established on both regions. Also,

/s ¼ DVs=DV ¼ 1� DVf =DV ¼ 1� /f ð4Þ

and for simplicity of notation one can drop the superscript ‘‘f’’ to get

/s ¼ 1� / ð5Þ

As such, calling the instantaneous local velocities for the solid
and fluid phases, us and u, respectively, one can obtain the average
for the solid velocity, within the solid phase, as follows,

huis ¼ 1
DVs

Z
DVs

us dVs ð6Þ

which, in turn, can be related to an average velocity referent to the
entire REV as,

uS ¼
DVs

DV

z}|{ð1�/Þ

1
DVs

Z
DVs

us dVs|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
huis

ð7Þ

A further approximation herein is that the porous bed is kept ri-
gid and moves with a steady average velocity us.

Both velocities can then be written as,

uD ¼ /huii and us ¼ ð1� /Þhuis ¼ const ð8Þ

A relative velocity is then defined as,

urel ¼ uD � uS ð9Þ

Here, for simplicity, we assume that the relative macroscopic
movement between the two phases is governed by Eq. (9) instead
of huii � huis. Or say, we assume the relative velocity to be based on
the total volume instead of the phase volume. With this in mind,
the momentum equation reads,

q
@uD

@t
þr � uD uD

/

� �� �
¼ �rð/h�piiÞ þ lr2uD

� l/
K

urel þ
cF/qjureljurelffiffiffiffi

K
p

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

relative drag

; ð10Þ
x/L
0 0.2 0.4 0.6 0.8 10

0.2

Fig. 4. Non-dimensional temperatures along the symmetry line y = H as a function
of ReD; us/vD = 0.5; ks/kf = 25; Da = 3.37 � 10�3; / = 0.9; (qcp)s/(qcp)f = 1.5.
1.4. Two-energy equation model

In a similar manner as above, macroscopic equations for heat trans-
port in porous media are obtained by applying the volume averaging
to local equations. Here, the mathematical model used to describe the
heat transfer between the solid and fluid phases is based on the
so-called two-energy equations model, which can be written as:
fðqcpÞf /g
@hTf ii

@t
þ ðqcpÞfr � ðuDhTf iiÞ

¼ r � fKeff ;f � rhTf iig þ hiaiðhTsii � hTf iiÞ ð11Þ

fð1� /ÞðqcpÞsg
@hTsii

@t
þ ðqcpÞsr � ðuShTsiiÞ

¼ r � fKeff ;s � rhTsiig � hiaiðhTsii � hTf iiÞ ð12Þ

where, Keff,f and Keff,s are the effective conductivity tensors for fluid
and solid, respectively, given by:

Keff ;f ¼ ½/kf �Iþ Kf ;s þ Kdisp ð13Þ

Keff ;s ¼ ½ð1� /Þks�Iþ Ks;f ð14Þ

In the above equations I is the unit tensor and Kdisp, Kf,s and Ks,f are
coefficients defined such that,

Thermal dispersion : �ðqcpÞf ð/h
iuiTf iiÞ ¼ Kdisp � rhTf ii ð15Þ

Local conduction :
r � 1

DV

R
Ai

nikf Tf dA
h i

¼ Kf ;s � rhTsii

�r � 1
DV

R
Ai

niksTs dA
h i

¼ Ks;f � rhTf ii

8><
>: ð16Þ

where ni in (16) is the unit vector pointing towards the solid phase.
In this work, for simplicity, one assumes that the overall thermal
resistance between the two phases is controlled by the interfacial
film coefficient rather than by the thermal resistance within each
phase. As such, the local conduction coefficients Kf,s, Ks,f are here ne-
glected for the sake of simplicity. Additional information on the
models in Eqs. (13) and (14) can be found in [11].

1.5. Interfacial heat transfer coefficient

The heat transferred between the two phases was modeled by
an interstitial heat transfer coefficient, hi, present in Eqs. (11) and
(12) such that,
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Fig. 5. Dimensional temperatures as a function of us/VD, ks/kf = 25, / = 0.9, Da = 3.37 � 10�3, ReD = 100, (qcp)s/(qcp)f = 1.5: (a) streamlines, (b) fluid temperature, (c) solid
temperature.
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hiaiðhTsii � hTf iiÞ ¼
1
rV

Z
Ai

ni � kfrTf dA

¼ 1
DV

Z
Ai

ni � ksrTs dA ð17Þ
where Ai is the interfacial area between the two phases and ai is the
interfacial area per unit volume or ai = Ai/rV. Wakao et al. [12]
obtained a heuristic correlation for a closely packed bed of
particle diameter D and compared their results with experimental
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data. This correlation for the interfacial heat transfer coefficient is
given by,

hiD
kf
¼ 2þ 1:1Re0:6

D Pr1=3; for / > 0:9 ð18Þ

Further, a numerical correlation for the interfacial convective heat
transfer coefficient was proposed by Kuwahara et al. [13] for a lam-
inar flow as,

hiD
kf
¼ 1þ 4ð1� /Þ

/

� �
þ 1

2
ð1� /Þ1=2ReDPr1=3; valid for 0:2

< / < 0:9 ð19Þ

Results in Eq. (19) depend on the porosity and are valid for packed
beds of particle diameter D. In addition, Saito and de Lemos [6] also
obtained the interfacial heat transfer coefficient for laminar flows
through an infinite square rod array using the same methodology
as Kuwahara et al. [13].

The interstitial heat transfer coefficient hi is here calculated by
Eq. (19) for laminar flow. However, since the relative movement
between phases is seen as the promoter of convective heat trans-
port from the fluid to the solid, or vice-versa, a relative Reynolds
number defined as,

ReD ¼
qjureljD

l
ð20Þ

is used in correlation Eq. (19) instead of using the absolute velocity
of the fluid phase. It is important to emphasize that ReD is a scalar
based on the modulus or magnitude of the relative velocity |urel|
and, as such, its value depends on both the solid and the fluid veloc-
ity and the relative motion between phases, regardless if both cur-
rents co-flow, are opposite or perpendicular to each other.
Accordingly, when the solid phase velocity approaches that of the
fluid, the only mechanism for transferring heat between phases is
conduction.

1.6. Geometry, boundary conditions and numerical method

The problem under investigation is a laminar flow through a
channel completely filled with a moving layer of a porous mate-
rial. Fig. 1(a) shows a porous reactor model in which both the por-
ous matrix and fluid enter at that west face located at x = 0 (the
figure is rotated 90 degrees counterclockwise). In addition to
injecting mass at x = 0, mass flow enters the model reactor uni-
formly along the y-direction. As such, a symmetry line can be
identified at y = H leading to a computational domain shown
Fig. 1(b), which has length and height given by L and H, respec-
tively. Further, Fig. 1 shows two possible crossflow configurations,
the first one keeping the ratio uD/uS = 1 (Fig. 1c) and another
maintaining uD/vD = 1 (Fig. 1(d). Both configurations are consid-
ered to be of crossflow type but here only the case shown in
Fig. 1(c) is investigated, i.e., simulations to follow used uD/uS = 1.
In addition, in all runs the porous matrix moves with constant po-
sitive velocity us and with the same value of the fluid velocity
component in x-direction, uDî. In the perpendicular y-direction,
the fluid velocity component is given by vDĵ where vDĵ > uDî in
all simulations.

Boundary conditions types are given by:

On symmetry; qw ¼ 0 ð21Þ

On the west face:

us ¼ usin
; uDî ¼ uDin

; hTsii ¼ Tsin
; hTf ii ¼ Tfin

ð22Þ

On south face:

vDĵ ¼ vDin
; hTf ii ¼ Tfin

; hTsii ¼ Tsin
ð23Þ
where us ¼ uŝi;uD ¼ uDîþ vDĵ: ð24Þ

Regardless of the run, in all simulations the inlet fluid and solid
temperatures were Tfin ¼ 20 �C and Tsin

¼ 80 �C, respectively. Before
proceeding, a word about the boundary condition for the solid
temperature along the south face in Fig. 1(b), hTsii ¼ Tsin

at y = 0,
seems important. In fact, any temperature profile could have been
specified at that surface that corresponds to the lateral walls of
the model reactor presented in Fig. 1(a). For a perfectly insulated
vessel, the condition ohTsii/oy = 0 could have been applied. For the
sake of simplicity, the same temperature at the inlet on the east,
Tsin

, was chosen. For a more realistic simulation, however, a differ-
ent value can be applied and the type of boundary condition used
poses no difficulty in the solution procedure here adopted.

The numerical method used to discretize the flow and energy
equations was the control volume approach. The SIMPLE method
of Patankar [14] was used to the handle the pressure-velocity
coupling. Fig. 2 presents a typical control volume written in the
generalized coordinates system g � n. Although in the present
work the computational domain of Fig. 1(b) is calculated using a
Cartesian grid, Fig. 2 is here included indicating that the code
employed was developed for generalized coordinates and
appropriated to be used in any two-dimensional or axi-symmetric
geometry. As such, the discretized form of the two-dimensional
conservation equation for a generic property u, in permanent
regime, is given by:

Ie þ Iw þ In þ Is ¼ Su ð25Þ

where Ie, Iw, In and Is represent, respectively, the fluxes of u in the
faces east, west, north and south of the control volume and Su its
source term.

Standard source term linearization is accomplished by using,

Su � S��u hui
i
p þ S�u ð26Þ

Discretization of the momentum equation in the x-direction
gives,

S�x ¼ ðS�xe ÞP � ðS
�x
w ÞP þ ðS

�x
n ÞP � ðS

�x
s ÞP þ S�P ð27Þ

S��x ¼ S��/ ð28Þ
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where, S⁄x is the diffusive part, here treated in an implicit form. The
second term, S⁄⁄x, entails the additional drag forces due to the
porous matrix, which are here treated explicitly.

Convergence was monitored in terms of the normalized residue,
which was set to be lower than 10�9.

2. Results and discussion

As mentioned above, the fluid and solid phases are given differ-
ent temperatures at the inlet and non-dimensional temperatures
for the solid and fluid are defined as:

hs;f ¼
hTs;f ii � Tmin

Tmax � Tmin
ð29Þ

where the subscripts s, f stands for the solid and fluid phases,
respectively, and ‘‘max’’ and ‘‘min’’ refers to both temperature max-
imum and minimum of either phase. All cases run are compiled in
Table 1 where dimensional and non-dimensional parameters are
described.

Before presenting the results, a note on modeling validation
seems timely. In Ref. [4], simulations using the laminar version
of the mathematical model and numerical method here described
were compared with analytical solutions by Nakayama and Kuwa-
hara et al. As more data is gathered in the literature for turbulent
regime, a more in-depth and complete validation procedure can
be pursued. For the time being, however, comparisons with analyt-
ical solutions are expected to guarantee the correctness of the code
developed and to reduce uncertainties on the results here
presented.

2.1. Effect of Reynolds number, ReD

The values used to vary Reynolds number ReD, according to
Table 1, were ReD = 10, ReD = 50 and ReD = 100 where ReD is defined
by Eq. (20).

Fig. 3 shows two-dimensional maps for streamlines and tem-
perature fields. Fig. 3(a) indicates that Reynolds variation affect
strongly the flow behavior. This occurs due to mass flow increasing
through the boundaries pushing the flow to the symmetry line
increasing the velocity at the center of the reactor. Regarding the
heat transfer between the phases, it is observed in Fig. 3(b) and
(c) that there is a decrease of the temperature gradient at x = 0 with
Reynolds number increasing. Also, the solid phase is better cooled
as ReD increases, as expected. As mentioned above, both the fluid
and solid velocities are equal in the longitudinal direction, uD = us,
while the fluid velocity in the transversal direction, vD, is increased
for having a larger value for ReD. Then, the component of the rela-
tive velocity in the longitudinal direction is null and in the trans-
versal direction is vD (see Fig. 3(c)). Fig. 4 shows values for
longitudinal non-dimensional temperature profiles along the sym-
metry line of the channel, where it is noticed that for low ReD the
fluid temperatures attains higher values than Hs at the exit and
along the centerline. When vDin

is increased, ReD = 100, the equilib-
rium temperature is reached before the end of the reactor and the
cooling effect of the solid phase is more pronounced. As such, as
the solid moves faster in relation to the fluid, the stirring effect is
stronger leading to enhancement of heat transfer between phases.

2.2. Effect of slip ratio, us/uD

In Figs. 5 and 6 the effect of varying us/uD is evaluated while
keeping fixed the transversal velocity vD, or say, ReD was fixed
(see Fig. 1(c) and Eq. (20)) whereas the inlet mass flow at the west
face, for both the solid and the fluid, were of equal value (see
Table 1). Fig. 5(a) shows that increasing the west flow rate does
not affect much the flow distribution, as far as the streamlines
are considered. Further, one can examine the heat transfer be-
tween fluid and solid phases when us and uD approaches to fluid
velocity value in transversal direction, vD. Fig. 5(b) and (c) shows
that it takes longer for the solid to be cooled as us is increased. Also,
as more energy is carried inside the reactor by convection, solid
temperatures everywhere are higher for higher values of us. It is
further noticed that when the slip ratio us/uD tends to 1, the heat
transfer between the phases occurs manly by conduction so that
the length necessary for thermal equilibrium is increased (Fig. 6).
2.3. Effect of Darcy number, Da

Another way to verify flow behavior and heat transfer between
fluid and solid phases is through variation of the particle diameter
D with consequent variation of permeability K, which is here calcu-
lated via the Ergun [15] equation,

K ¼ D2/3=144ð1� /Þ2 ð30Þ

Eq. (30) gives the permeability K in terms of the particle diam-
eter D and porosity / and was proposed for packed beds. The Darcy
number is then calculated as Da = K/H2. As such, the porous beds
here considered are composed of solid particles having size D.
Depending on how spaced apart these particles are distributed
within the medium, different porosities are obtained. Therefore,
the use of Eq. (30) implies in assuming that the Darcy number
Da, as well as the permeability K, are a function of both D and /.
In the results to be shown in this section on the effect of Da, the
porosity is kept constant and equal to 0.9 whereas the particle
diameter is varied giving the values for K compiled in Table 1.

Further, as mentioned, the problem under investigation here
can be described as a heated solid matrix moving along the reactor
being cooled by fluid stream flowing in both longitudinal and
transverse directions. The variation of the particle diameter, keep-
ing constant the porosity, will directly affect the permeability of
the medium, where, the greater the particle diameter D, the greater
will be the medium permeability K, as seen by the formulae above.

Fig. 7(a) indicates that the flow distribution is not much af-
fected by the particle size, however, when the permeability of
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the medium is reduced by decreasing D, a larger interfacial area is
obtained and a quicker heat transfer rate between the two phases
is achieved. This effect can be seen by inspecting Fig. 7(b) and (c).
This effect is further presented when inspecting Fig. 8 that shows
the behavior of both temperatures at the centerline of the reactor.
For higher values of Da, or say, for higher particle diameter D, less
interfacial area impacts on interfacial heat transfer rates and bring
the equilibrium temperature to a lower value at the reactor exit. Or
say, the fluid is not heated up as much as in the case of a larger
interfacial area (lower Da).
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Fig. 13. Dimensional temperatures as a function of ks/kf, / = 0.9, ReD = 75, us/mD = 0, Da = 3.37 � 10�3, (qcp)s/(qcp)f = 1.5: (a) fluid temperature, (b) solid temperature.
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Fig. 14. Dimensional temperatures as a function of ks/kf, ReD = 75, Da = 3.37 � 10�3, (qcp)s/(qcp)f = 1.5, us/mD = 0.1, / = 0.9: (a) fluid temperature, (b) solid temperature.
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Fig. 15. Dimensional temperatures as a function of ks/kf, ReD = 75, Da = 3.37 � 10�3, (qcp)s/(qcp)f = 1.5, us/vD = 0.4, / = 0.9: (a) fluid temperature, (b) solid temperature.
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2.4. Effect of porosity, /

Porosity effect upon bidimensional flow and heat transfer for a
crossflow moving bed is further shown in Fig. 9. Again it can be seen
in Fig. 9(a) that the flow distribution is not much affected by chang-
ing porosity. The values of the porosity used in this simulation were
0.4, 0.6 and 0.8. Here, it is important to mention that although in for
granular beds porosities are in general below 0.6, the model here
considered was developed for porous media having sufficient void
space for turbulence to be developed within the pores [8]. There-
fore, although here only laminar flow is investigated, simulation
of turbulence in highly porous media is the final goal of this system-
atic work. Further, it is also emphasized that the treatment of the
solid phase is such that a unique velocity is assumed for the entire
porous matrix, which reflects practical situations more related to
packed moving beds, as in gasifiers, than the movement of dis-
persed granular material, as in fluidized bed systems.

The longitudinal temperature field for the transversal solid-
fluid is shown in Fig. 9(b) and (c). It is observed that with the
increasing of the porosity there is a decrease in the temperature
gradient for both fluid and solid phases at the west inlet. Also, as
/ increases, a deeper cooling of the porous material is obtained,
reflecting the fact that the cooling fluid penetrates more easily into
the core of the layer as the void space becomes larger size. It can
also be seen in Fig. 10 that the effect of the porosity on the longi-
tudinal temperature distribution along the symmetry line is to
elongate the length for thermal equilibrium as / increases. On
the other hand, for small porosity a quicker thermal equilibrium
is reached at expense of increasing the equilibrium temperature
at the exit.

2.5. Effect of thermal capacity ratio, (qcp)s/(qcp)f

In this simulation, the fluid thermal capacity (qcp)f was kept
constant whereas the solid thermal capacity (qcp)s was in-
creased. Here, the streamlines are not shown because the same
velocity distribution was considered in all cases. Through
Fig. 11(a) and Fig. 11(b) it is noticed that the increasing the spe-
cific heat of the solid material causes an increasing in the fluid
temperature as more energy per unit mass is brought into the
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Fig. 16. Non-dimensional temperatures along the symmetry line y = H as a function
of ks/kf for ReD = 75, / = 0.9, Da = 3.37 � 10�3, (qcp)s/(qcp)f = 1.5: (a) us/vd = 0.0, (b)
us/vD = 0.1, (c) us/vD = 0.4.
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system. Temperature gradients at west inlet are also decreased
and overall temperatures of both phases raises as (qcp)s/(qcp)f

increases. These results can be better observed in noting the
temperature behavior along the symmetry line in Fig. 12. For a
higher ratio (qcp)s/(qcp)f the solid temperature keeps is high
value, heating up the fluid and leading to a higher fluid temper-
ature at the east exit.
2.6. Effect of thermal conductivity ratio, ks/kf

For this set of simulations, the fluid thermal conductivity kf

was kept constant, varying only the solid thermal conductivity
ks. As in the case of the ratio (qcp)s/(qcp)f, the effect of the variable
analyzed here, namely ks, did not influence the flow behavior at
all and for that no streamlines pattern are presented below. Be-
low, three values for the ratio us/vD was chosen, namely 0.0, 0.1
and 0.4.

When solid is not moving, Fig. 13, an increasing in the value of
the thermal conductivity of the solid causes an increase in the solid
temperature by conduction along the longitudinal axis of the
reactor. That can be seen in Fig. 13(a) and (b). Further, with the
movement of the solid phase for other two cases, i.e., us/vD = 0.1
(Fig. 14) and us/vD = 0.4 (Fig. 15), while keeping constant the fluid
velocity in the transversal direction vD, all temperature tend to rise
due to the increase of the thermal conductivity throughout the
equipment. At the exit, fluid temperature will be higher due to
the fact that solid temperatures are also higher due to the elevated
solid thermal temperatures. This effect is more evident if one
compares the behavior of both temperatures for the three solid
phase velocities shown in Fig. 16. So, for moving bed cases, there
is an improvement on the heat transfer rate from the solid to the
fluid when temperatures for the fixed bed (Fig. 16(a)) are
compared to those considering a moving solid structure
(Fig. 16(b) and (c)).
3. Conclusions

This work investigated the effect thermal property variation on
the flow behavior and heat transfer between fluid and solid phases
for longitudinal and transversal flow using the two energy
equation with the thermal non-equilibrium model.

In summary, for a larger interfacial area, obtained by either
decreasing Da or porosity, both phases attain the equilibrium tem-
perature within a shorter developing length. For the three cases of
thermal conductivity ratio here analyzed, it is seen that for high ks/
kf cases, temperature gradients for both fluid and solid phases de-
creases since a higher solid thermal conductivity transport heat
more easily through the solid, which, in turn, heats up the fluid
via interfacial heat transfer.

In all simulations, the fluid temperature reaches its highest
values in the symmetry plane of the channel. This occurs mainly
for high values of the us/uD, (qcp)s/(qcp)f and ks/kf, where, in these
cases, both fluid and solid temperatures rise due the high values
of these parameters. For high values of ReD, Da and /, the fluid
temperature decreases along the channel, mainly in the symmetry
line.
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