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This work investigates the influence of physical properties on heat transfer in a turbulent counterflow
in a moving bed using the High and Low Reynolds number turbulence models, in which the working
fluid flows in opposite direction to that of the steady movement of the permeable rigid medium. Trans-
port equations for flow and heat transfer in a moving bed equipment are applied and discretized using
the control-volume method. The system of algebraic equations obtained is relaxed via the SIMPLE algo-
rithm. The effects of Reynolds number, solid-to-fluid velocity ratio, permeability, porosity, ratio of
solid-to-fluid thermal capacity and ratio of solid-to-fluid thermal conductivity on heat transport are
investigated. Results indicate that motion of solid material, contrary to the direction of the fluid,
enhances heat transfer between phases. The same effect was observed for smaller Darcy number
and porosity, as well as for higher solid-to-fluid thermal capacity and thermal conductivity ratios.
When the intrinsic fluid velocity increases there is a greater conversion of mechanical kinetic energy
into turbulence, increasing the final levels of the turbulent kinetic energy for both High and Low
Reynolds number models.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Many applications in industry are concerned with turbulent
flow through permeable beds. Among them one can mention mov-
ing bed technology in counterflow configuration. Examples about
such technology are found in equipment for chemical compound
separation, recuperation of petrochemical processes, drying of
grains and seeds, removal of organic matter in affluents and in cer-
tain types of heat exchangers, just to mention a few applications.
Within this context, Yang (2009) [1] showed numerical simulation
of turbulent flow and heat transfer in heat exchangers fitted with
porous media, where a permeable material was inserted in a heat
exchanger to improve its process performance. There, the k–e mod-
el was applied to treat turbulence. Littman et al. (1995) [2], Manso-
ori et al. (2002) [3] and Zhang and Reese (2001) [4] presented
studies about turbulent gas–solid transport, where [2] showed
the effect of particle diameter, particle density and loading ratio
on the effective drag coefficient in steady transport, [3] presented
the thermo-mechanical modeling of turbulence heat transfer in
gas–solid flows including particle collisions and [4] studied parti-
cle-gas turbulence interactions using a kinetic theory approach ap-
plied to granular flows. Turbulent flows in composite domains,
involving both a finite porous medium and a clear region, have
been also investigated in the literature [5,6].

Several studies on laminar and turbulent flow though perme-
able media in a number of configurations were conducted and
compiled in a book [7]. In those studies, when analyzing heat
transport through the phases composing the medium, both the lo-
cal thermal equilibrium model (LTE) as well as thermal non-equi-
librium approach (LTNE) where tackle [8]. For cases when the solid
phase also moves, computations for a moving porous beds in par-
allel [9] and counterflow configurations, have been presented [10].
However, studies in [9,10] were restricted to the laminar flow
regime.

The purpose of this contribution is to extend the work in [10],
which was limited to laminar flow, to the turbulent regime. One
should point out that when going from simulating a simpler lami-
nar flow to accurately predicting turbulent flow regime within
acceptable accuracy, not only a proper mathematical model has
to be employed, but also the use of an adequate numerical scheme
and stable solution algorithm have to be employed. And yet, it is
the behavior of the turbulence kinetic energy associated with the
flow that is an important result to be observed. Such quantity,
evidently, cann ot be obtained with simpler laminar models.

The study herein includes investigation on heat transfer between
phases when several flow and material parameters as varied, includ-
ing the effect Reynolds number, slip ratio, permeability, as well as
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Nomenclature

Ai interfacial area [m2]
ai interfacial area per unit volume, ai = Ai/DV [m�1]
cF Forchheimer coefficient
ck non-dimensional turbulence model constant
c’s model constants
D particle diameter [m]
D deformation rate tensor, D = [$u + (ru)T]/2[s�1]
f2 damping function
fl damping function
Gi production rate of hkii due to the porous matrix
H distance between channel walls [m]
k turbulent kinetic energy per unit mass [m2/s2]
hkii intrinsic (fluid) average of k
hkiv volume (fluid + solid) average of k
K permeability [m2]
L channel length [m]
p thermodynamic pressure [N/m2]
hpii intrinsic (fluid) average of pressure p [N/m2]
Re Reynolds number based on �uD

ReD Reynolds number based on �urel
�u microscopic time-averaged velocity vector [m/s]
h�uii intrinsic (fluid) average of �u [m/s]

�uD Darcy velocity vector, �uD ¼ /h�uii [m/s]
�urel relative velocity based on total volume, �urel ¼ �uD � uS

[m/s]
us friction velocity [m/s]
X dimensionless coordinate
y+ dimensionless distance among wall and first node,

yþ ¼ ywus
m

Greek
e dissipation rate of k, e ¼ lru0 : ðru0ÞT=q [m2/s3]
heii intrinsic (fluid) average of e
/ porosity
l fluid dynamic viscosity [kg/(m s)]
lt turbulent viscosity [kg/(m s)]
lt/

macroscopic turbulent viscosity [kg/(m s)]
m kinematic viscosity [m2/s]
q density [kg/m3]
rk;r� non-dimensional constants

Subscript
s,f s = solid, f = fluid
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thermal capacity and thermal conductivity ratios between the
moving solid phase and the permeating fluid. With that, a wider
range of engineering systems can be analyses with the model
detailed in [7].
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Fig. 1. Porous bed reactor with a moving solid matrix: (a) Flow configurations, (b)
Counterflow with fluid moving west to east, (c) Counterflow with fluid moving east
to west.
1.1. Macroscopic governing equations

The equations to follow are fully available in the open literature
and for that their derivation are not repeated here [7]. Two possible
Table 1
Damping functions and constants for turbulence models.

High Reynolds
number
turbulence
model
proposed by
Launder and
Spalding
(1974) [13]

Low Reynolds number turbulence model proposed by
Abe et al. (1992) [14]
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Fig. 2. Control volume and notation.
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flow configurations can be analyzed as depicted in Fig. 1a. Both
phases can co-flow in the same direction (parallel flow) or have
opposite directions (counterflow). Here, only counterflow cases
are investigated. Further, the geometry considered in this work is
also schematically shown Fig. 1. The channel shown in the figure
has length and height given by L and H, respectively. For the sake
of checking the computer code accuracy, two equivalent cases
are here investigated. In the first case, the solid matrix moves from
east to west whereas the fluid enters through the west side of the
porous reactor, Fig. 1b. In an equivalent but reversed configuration,
both solid and fluid exchange their side of entrance, Fig. 1c. Also,
for a moving bed, only cases where the solid phase velocity is kept
constant will be considered here, or say, we assume a moving bed
with constant velocity that crosses a fixed control volume in addi-
tion to a counterflow fluid

A macroscopic form of the governing equations is obtained by
taking the volumetric average of the entire equation set (Gray
and Lee (1977) [11], Whitaker (1969) [12]. In this development,
the porous medium is considered to be rigid, fixed, isotropic and
saturated by the incompressible fluid. The final forms of the equa-
tions considered here are given by [7] and use a relative velocity
defined as (Fig. 1a.),

�urel ¼ �uD � uS: ð1Þ

In addition, a relative Reynolds number based on �urel and D can be
defined as:

ReD ¼
qj�ureljD

l
ð2Þ

Further, if one uses the Darcy velocity and the overall reactor size H,
one has a different definition for Reynolds given by,
Table 2
Cases and parameters used (High Reynolds Number Turbulence Model).

Cases investigated Dimensional Non-dim

uD[m/s] uS[m/s] urel[m/s] K[m2] ReD

Effect of ReD 1.416E01 �7.083E00 2.125E01 1.000E-06 1.00E04
7.083E01 �3.542E01 1.062E02 5.00E04
1.417E02 �7.083E01 2.125E02 1.00E05
1.417E03 �7.083E02 2.125E03 1.00E06

Effect of uS/uD 1.417E02 0.000E00 1.417E02 1.000E-06 6.67E04
�3.542E01 1.771E02 8.33E04
�7.083E01 2.125E02 1.00E05
�1.062E02 2.479E02 1.17E05
�1.346E02 2.762E02 1.30E05

Effect of Da 1.417E02 �7.083E02 2.125E02 1.562E-08 1.25E04
1.406E-07 3.75E04
1.562E-06 1.25E05

Effect of / 7.083E01 �3.542E01 1.062E02 1.975E-07 5.00E04
1.000E-06
7.111E-06

Effect of (qcp)s/(qcp)f 7.083E01 �3.542E01 1.062E02 1.000E-06 5.00E04

Effect of ks/kf, uS/uD = 0 1.062E02 0.000E00 1.062E02 1.000E-06 5.00E04

Effect of ks/kf, uS/uD = 0.1 9.659E01 �9.659E00 1.062E02 1.000E-06 5.00E04

Effect of ks/kf, uS/uD = 0.4 7.589E01 �3.036E02 1.062E02 1.000E-06 5.00E04
Re ¼ qj�uDjH
l

ð3Þ
1.2. Flow equations

Incorporating all needed models, the final equations for turbu-
lent flow read after volume averaging in addition to time
averaging:

Continuity:

r � �uD ¼ 0 ð4Þ

Momentum:

q r �
�uD �uD

/

� 	� �
�r � lþ lt/

� �
r�uD þ ðr�uDÞT
h in o

¼ �rð/h�piiÞ � l/
K

�urel þ
cF/qj�urelj�urelffiffiffiffi

K
p : ð5Þ

where lt/
is the macroscopic eddy viscosity given by

lt/
¼ qclfl

hkii
2

heii
; ð6Þ

cl is a dimensionless constant and fl is a damping function, which
differs from unit if a Low-Reynolds turbulence model is applied.
Here, it is important to clarify the nomenclature used to classify tur-
bulence models in regard to their ability to handle flows close to
walls. For the so-called High Reynolds Turbulence Model (HRTM),
a macroscopic form of the standard k–e closure was used (Launder
and Spalding (1974) [13]). In such approach, the region close to the
wall is bypassed and the velocity close to the surface is obtained via
ensional

Re uS/uD Da / (qcp)s/(qcp)f ks/kf y+

1.292E05 �5.0E-01 1.665E-04 0.6 1.0E00 2.5E01 1.026E01
6.458E05 4.901E01
1.292E06 9.712E01
1.292E07 9.528E02

1.292E06 0.0E00 1.665E-04 0.6 1.0E00 2.5E01 6.266E01
�2.5E-01 7.960E01
�5.0E-01 9.712E01
�7.5E-01 1.150E02
�9.5E-01 1.296E02

1.292E06 �5.0E-01 2.601E-06 0.6 1.0E00 2.5E01 1.138E02
2.341E-05 1.121E02
2.601E-04 9.267E01

6.458E05 �5.0E-01 3.289E-05 0.4 1.0E00 2.5E01 6.175E01
1.665E-04 0.6 4.901E01
1.184E-03 0.8 3.122E01

6.458E05 �5.0E-01 1.665E-04 0.6 2.5E-01 2.5E01 4.901E01
5.0E-01
1.0E00
1.0E01

9.688E05 0.0E00 1.665E-04 0.6 1.0E00 1.0E00 4.734E01
1.0E01
1.0E02
1.0E03

8.807E05 �1.0E-01 1.665E-04 0.6 1.0E00 1.0E00 4.767E01
1.0E01
1.0E02
1.0E03

6.920E05 �4.0E-01 1.665E-04 0.6 1.0E00 1.0E00 4.869E01
1.0E01
1.0E02
1.0E03



M.J.S. de Lemos, A.C. Pivem / International Journal of Heat and Mass Transfer 72 (2014) 98–113 101
the wall log-law (see [13] for details). Essentially, when using a
HRTM a given value for velocity close to the wall is used in lieu of
the non-slip condition at the surface. Such value is calculated using
the aforementioned wall log-law. On the other hand, when the re-
gion close to a surface is computed with a fine grid, resolving even
the laminar sub-layer where grid points are laid, then the Low Rey-
nolds Turbulence Model (LRTM) makes use of damping functions
and constants which differ from the HRTM (additional information
can be found in Abe et al. (1992) [14]). More details on damping
functions and model constants for both wall models will be shown
later.

Further, to obtain the eddy viscosity, lt/
, we used here, as men-

tioned, the Low and High Reynolds number k – e models, whose
equations for the turbulent kinetic energy and its dissipation rate,
incorporating now a relative movement between the two phases
j�urelj, are given next.

A transport equation for hkii can be written as,

q½r � ð�uDhkiiÞ� ¼ r � lþ
lt/

rk

� 	
rð/hkiiÞ

� �
� qhu0u0ii

: r�uD þ ckq
/hkiij�ureljffiffiffiffi

K
p

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Gi

�q/heii ð7Þ

where rk and ck are dimensionless constants and the generation
rate due to the porous substrate, Gi, which is included in Eq. (7),
depends on j�urelj and reads,

Gi ¼ ckq/hkiij�urelj=
ffiffiffiffi
K
p

ð8Þ

A corresponding transport equation for heii, incorporating also the
relative velocity j�urelj, can be written as,
Table 3
Cases and parameters used (Low Reynolds Number Turbulence Model).

Cases investigated Dimensional Non-dim

uD[m/s] uS[m/s] urel[m/s] K[m2] ReD

Effect of ReD 1.771E00 �8.854E�01 2.656E00 1.000E�06 1.25E03
3.542E00 �1.770E00 5.312E00 2.50E03
7.083E00 �3.542E00 1.062E01 5.00E03

Effect of uS/uD 1.062E01 0.000E00 1.062E01 1.000E�06 5.00E03
�2.656E00 1.325E01 6.23E03
�5.312E00 1.594E01 7.50E03
�7.968E00 1.859E01 8.75E03
�1.009E02 2.072E01 9.75E03

Effect of Da 1.417E01 �7.083E00 2.125E01 1.562E�08 1.25E03
1.406E�07 3.75E03
1.562E�06 1.25E04

Effect of / 3.542E00 �1.771E00 5.312E00 1.975E�07 2.50E03
1.000E�06
7.111E�06

Effect of (qcp)s/(qcp)f 3.542E00 �1.771E00 5.312E00 1.000E�06 2.50E03

Effect of ks/kf,
uS/uD = 0

5.312E00 0.000E00 5.312E00 1.000E�06 2.50E03

Effect of ks/kf,
uS/uD = 0.1

4.829E00 �4.829�01 5.312E00 1.000E�06 2.50E03

Effect of ks/kf,
uS/uD = 0.4

3.795E00 �1.518E00 5.312E00 1.000E�06 2.50E03
q
@

@t
ð/heiiÞ þ r � ð�uDheiiÞ

� �
¼ r � ðlþ

lt/

re
Þrð/heiiÞ

� �

þ c1ð�qhu0u0ii

: r�uDÞ
heii

hkii
þ c2ckq

/heiij�ureljffiffiffiffi
K
p

� c2f2q/
heii

2

hkii
ð9Þ

where re, c1 and c2 are constants and f2 is a damping function, �uD is

Darcy velocity vector, u
�

D ¼ /hu
�
ii, / is the porosity, q is the density

of the fluid, p is the pressure, l is the fluid dynamic viscosity, K is
the medium permeability, cF is the Forchheimer coefficient, lt/

is

the macroscopic turbulent viscosity, rk and re are constants, hkii

is the intrinsic (fluid) average of k and h�ii is the intrinsic dissipation

rate of hkii, e ¼ lru0 : ðru0ÞT=q. In Eq. (9), c1 and c2 are constants,

Pi ¼ �qhu0u0ii : r�uD is the production rate of hkii due to gradients

of �uD and Gi ¼ ckq/hkiij�uDj=
ffiffiffiffi
K
p

is the generation rate of the intrinsic
average of k due to the action of the porous matrix (see [7] for
details).

1.3. Two-energy equation model

As for the flow, the macroscopic equations to heat transport in
porous media are obtained by applying the average volume to
microscopic equations. The mathematical model used to describe
the heat transfer between the solid and fluid in a unit of moving
bed is based on the two-energy equations model, which can be
written as:
ensional

Re uS/uD Da / (qcp)s/
(qcp)f

ks/kf y+

1.615E04 �5.0E�01 1.665E�04 0.6 1.0E00 2.5E01 8.67E�01
3.229E04 1.47E00
6.458E04 2.53E00

9.687E04 0.0E00 1.665E�04 0.6 1.0E00 2.5E01 3.15E00
�2.5E�01 3.29E00
�5.0E�01 3.41E00
�7.5E�01 3.51E00
�9.5E�01 3.59E00

1.292E05 �5.0E�01 2.601E�06 0.6 1.0E00 2.5E01 4.46E00
2.341E�05 4.33E00
2.601E�04 4.09E00

3.229E04 �5.0E�01 3.289E�05 0.4 1.0E00 2.5E01 1.70E00
1.665E�04 0.6 1.47E00
1.184E�03 0.8 1.24E00

3.229E04 �5.0E�01 1.665E�04 0.6 2.5E�01 2.5E01 1.47E00
5.0E�01
1.0E00
1.0E01

4.844E04 0.0E00 1.665E�04 0.6 1.0E00 1.0E00 1.86E00
1.0E01
1.0E02
1.0E03

4.403E04 1.0E�01 1.665E�04 0.6 1.0E00 1.0E00 1.76E00
1.0E01
1.0E02
1.0E03

3.460E04 4.0E�01 1.665E�04 0.6 1.0E00 1.0E00 1.52E00
1.0E01
1.0E02
1.0E03
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Fig. 3. Non-dimensional temperatures and turbulent kinetic energy for High Reynolds number turbulence model as a function of ReD, with uS=�uD ¼ �0:5; ks/
kf = 25;Da = 1.665 � 10�4, (qcp)s/(qcp)f = 1, / = 0.6: (a), (c) Flow moving west to east, (b), (d). Flow moving east to west.
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qcp
� 

fr� �uDhTf ii
� �

¼r� Keff ;f �rhTf ii
n o

þhiai hTsii�hTf ii
� �

ð10Þ

qcp
� 

sr� uShTsii
� �

¼r� Keff ;s �rhTsii
n o

�hiai hTsii�hTf ii
� �

ð11Þ

where, Keff,f and Keff,s are the effective conductivity tensors for fluid
and solid, respectively, given by:

Keff ;f ¼ ½/kf � Iþ Kf ;s þ Kdisp þ Kdisp;t þ Kt ð12Þ

Keff ;s ¼ ½ð1� /Þks� Iþ Ks;f ð13Þ

The terms Kf,s, Kf,s, Kt, Kdisp, and Kdisp,t are respectively, the local con-
duction tensors between fluid and solid, turbulent heat flow, ther-
mal dispersion and turbulent thermal dispersion. I is the unit
tensor and Kdisp, Kf,s and Ks,f are coefficients defined as,

Local conduction:

1
DV

R
Ai

nikf Tf dA ¼ Kf ;s � rhTsii

1
DV

R
Ai

niksTsdA ¼ Ks;f � rhTf ii

8<
:
where ni in Eq. (14) is the unit vector pointing outwards of the fluid
phase and Ai is the interfacial area between the two phases.

Turbulent heat flow:’

� qcp
� 

f / hu0iihT 0f i
i

� �
¼ Kt � rhTf ii ð15Þ

Thermal dispersion:
� qcp
� 

f / hi �uiTf ii
� �

¼ Kdisp � rhTf ii ð16Þ

Turbulent thermal dispersion:

� qcp
� 

f / hiu0iT 0f i
i

� �
¼ Kdisp;t � rhTf ii ð17Þ

In this work, for simplicity, one assumes that the overall ther-
mal resistance between the two phases is controlled by the inter-
facial film coefficient, rather than by the thermal resistance within
each phase. As such, the local conduction coefficients Kf,s, Ks,f are
here neglected for the sake of simplicity. Additional information
on the models in Eqs. (12), and (13) can be found in [15].

1.4. Interfacial heat transfer coefficient

In Eqs. (10), and (11) the heat transferred between the two
phases was modeled by means of a film coefficient, hi, such that:

hiai hTsii � hTf ii
� �

¼ 1
DV

Z
Ai

ni � kfrTf dA

¼ 1
DV

Z
Ai

ni � ksrTs dA: ð18Þ

where ai = Ai/DV .
For numerically determining hi, Kuwahara et al. (2001) [16]

modeled a porous medium by considering it as an infinite number
of solid square rods of size D, arranged in a regular triangular
pattern. They numerically solved the governing equations in the
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Fig. 4. Non-dimensional temperatures and turbulent kinetic energy for Low Reynolds number turbulence model as a function of ReD, with uS=�uD ¼ �0:5; ks/
kf = 25;Da = 1.665 � 10�4, (qcp)s/(qcp)f = 1, / = 0.6: (a), (c) Flow moving west to east, (b), (d). Flow moving east to west.
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void region, exploiting to advantage the fact that for an infinite and
geometrically ordered medium a repetitive cell can be identified.
Periodic boundary conditions were then applied for obtaining the
temperature distribution under fully developed flow conditions.

For turbulent flow, Saito and de Lemos (2006) [15] extended the
work in [17] for ReD up to 107. Both Low Reynolds and High Rey-
nolds turbulence models were applied in [15]. The following
expression was proposed in [15]:

hiD
kf
¼ 0:08

ReD

/

� 	0:8

Pr1=3; for 1:0x104 <
ReD

/

< 2:0x107; valid for 0:2 < / < 0:9; ð19Þ

The interstitial heat transfer coefficient hi is calculated by corre-
lations Eq. (19) for turbulent flow. However, since the relative move-
ment between phases is seen as the promoter of convective heat
transport from the fluid to the solid, or vice versa, the Reynolds num-
ber is used in the correlation Eq. (19) instead of a Reynolds number
based on the absolute velocity of the fluid phase. Accordingly, when
the solid phase velocity approaches the fluid velocity, the only mech-
anism for transferring heat between phases is conduction.
1.5. Wall treatment and boundary conditions

In this work, two forms of the k–e model are employed, namely
the High Reynolds and Low Reynolds number turbulence models.
For the High Reynolds turbulence model, a macroscopic form of
the standard k–e closure was used (Launder and Spalding (1974)
[13]) whereas for the Low Reynolds number model constants and
damping functions of Abe et al. (1992) [14] were applied. All model
constants and damping functions for both turbulence models are
compiled in Table 1.

Boundary conditions are given by:
On the solid walls (Low Reynolds turbulence model):

�u ¼ 0; h�uii ¼ 0; k ¼ 0; e ¼ m
@2k
@y2 ð20Þ

On the solid walls (High Reynolds turbulence model):

�u
us
¼ 1

j
lnðyþEÞ; k ¼ u2

s

c1=2
l

; e ¼ c3=4
l k3=2

w

jyw
ð21Þ

with, us ¼ sw
q

� �1=2
, yþw ¼

ywus
m ,where, us is wall-friction velocity, yw is

the non-dimensional coordinate normal to wall, j is the von
Kármán constant, and E is a constant that depends on the roughness
of the wall.

For the west and east faces, boundary conditions will depend on
the direction of fluid and feed stream as depicted in Fig. 1, as
follows:

Case of Fig. 1b – counterflow with fluid moving west to east:
On the west face:
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�uD ¼ uinlet; hTf ii ¼ Tfin ð22Þ

hTsii ¼ Tsout � Tfin
þ

@
@x ðqcpÞf uinlethTf ii � /kf

@hTf ii

@x

� ����
x¼0

hiai
ð23Þ

On east face:

us ¼ usin
; hTsii ¼ Tsin

ð24Þ

hTf ii ¼ Tfout � Tsin
þ

@
@x ðqcpÞsusin

hTsii � ð1� /Þks
@hTsii
@x

� ����
x¼L

hiai
ð25Þ

Boundary conditions (23) and (25) come from applying the cor-
responding transport equations (10) and (11), in their steady-state
form, at west and east faces, respectively.

Case of Fig. 1c - counterflow with fluid moving east to west:
On the west face:

us ¼ usin
; hTsii ¼ Tsin

ð26Þ

hTf ii ¼ Tfout � Tsin
þ

@
@x ðqcpÞsusin

hTsii � ð1� /Þks
@hTsii
@x

� ����
x¼0

hiai
ð27Þ

On east face:

�uD ¼ uinlet; hTf ii ¼ Tfin ð28Þ
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Fig. 5. Non-dimensional temperatures and turbulent kinetic energy for High Reyn
Da = 1.665 � 10�4, (qcp)s/(qcp)f = 1, Re = 1.292 � 106: (a), (c) Flow moving west to east, (
hTsii ¼ Tsout � Tfin
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@
@x ðqcpÞf uinlethTf ii � /kf

@hTf ii

@x
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x¼L
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ð29Þ

Before leaving this section, it is interesting to say a word about
the practical application of the inlet boundary conditions above.
Real world engineering flows, in actual reactors, will most likely
present a temperature distribution when the incoming flow, of
either phase, is not well-insulated. However, when the feed stream
is thermally isolated and the working fluid is well mixed and
evenly distributed before entering the reactor, the use of constant
temperature values at inlet may well represent the basic features
of flow and heat transfer in such equipment. Example of similar
boundary conditions assuming constant values at inlet for moving
beds are found in reference [19].

1.6. Numerical method

The numerical method used to discretize the flow equations
was based on the control volume approach. A schematic of node
labeling for a general non-orthogonal two-dimensional grid is pre-
sented in Fig. 2. The SIMPLE method of Patankar (1980) [18] was
used to the handle the pressure–velocity coupling and applied to
relax the systems of algebraic equations.

The discretized form of the two-dimensional conservation
equation for a generic property u (tensor of any order) in steady-
state reads,
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Ie þ Iw þ In þ Is ¼ Su ð30Þ

where Ie, Iw, In and Is represent, respectively, the fluxes of u in the east,
west, north and south faces of the control volume. Su represents the
source term, whose standard linearization is accomplished by making,

Su � S��u /P hui
i
p þ S�u ð31Þ

where /P is the porosity of node P (see Fig. 2). Discretization of
the momentum equation in the x-direction gives further,

S�x ¼ ðS�xe ÞP � ðS
�x
w ÞP þ ðS

�x
n ÞP � ðS

�x
s ÞP þ S�P ð32Þ

S��x ¼ S��/ ð33Þ

where, S�x is composed by part of the diffusion fluxes that are trea-
ted explicitly and by the pressure gradient term. The term, S⁄⁄x, en-
tails the additional drag forces due to the porous matrix. Further, for
the sake of simplicity, when discretizing Eq. 5 the relative velocity
was considered only in the last term on the right-hand-side of it.
Since this term is responsible for most of the drag on the fluid, such
simplification did not impact on the trends of the results to be
shown later.

Convergence was monitored in terms of the normalized residue,
which was set to be lower than 10�9.

The two cases considered here are depicted in Fig. 1b,c and the
only difference between them is the reversal, in the x-direction, of
the boundary conditions applied for both velocities at their
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Fig. 6. Non-dimensional temperatures and turbulent kinetic energy for Low Reyno
Da = 1.665 � 10�4, (qcp)s/(qcp)f = 1, Re = 9.687 � 104: (a), (c) Flow moving west to east, (
entrances. The sole reason for considering such two possibilities
was to guarantee computer accuracy when comparing the
solutions obtained with the two cases, which should present a per-
fect ‘‘mirror image’’ with respect to each other. Here, as in [10],
showing symmetrical but identical results, by inverting the move-
ment of both phases, was a way to double-check the code for any
possible flaw when the many parameters were varied, including
the Reynolds number, the slip ratio, the Darcy number as well as
the thermal capacity and thermal conductivity ratios.

2. Results and discussion

As mentioned, Fig. 1a shows two possibilities for the relative
movement of phases. Here, only counterflow cases are investigated.

The porous matrix moves with constant velocity us in opposite
direction to the fluid velocity �uD (see Fig. 1a). In the following fig-
ures, axial temperature profiles for both phases are presented for
the two cases in Fig. 1b and c with the sole purpose to show that
results will be consistent with application of reserved boundary
conditions.

The fluid and solid phases are given different temperatures at
the inlet and non-dimensional temperatures for the solid and fluid
are defined as:

hs;f ¼
hTs;f ii � Tmin

Tmax � Tmin
ð34Þ
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Fig. 7. Non-dimensional temperatures and turbulent kinetic energy for High Reynolds number turbulence model as a function of Da, with uS=�uD ¼ �0:5, (qcp)s/(qcp)f = 1, ks/
kf = 25, / = 0.6, Re = 1.292 � 106: (a), (c) Flow moving west to east, (b), (d). Flow moving east to west.
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where the subscripts s, f stands for the solid and fluid phases,
respectively, and ‘‘max’’ and ‘‘min’’ refers to both temperature max-
imum and minimum of either phase. Also, it is interesting to men-
tion that correctness of the energy balance of both phases was
checked for every run to be presented, or say, heat leaving one
phase was properly absorbed by the other.

In the following figures, results for the distribution of tempera-
ture and turbulent kinetic energy along the channel mid-height in
a moving bed, for both High and Low Reynolds turbulence models,
are presented. The fluid and solid phases are given different tem-
peratures at the inlet. Data for all runs for moving bed cases are de-
tailed in Tables 2 and 3.

Before showing the results, a note on the character of the
numerical solution here adopted, namely an elliptic scheme, is
here justified. Although the geometry and boundary conditions in
Fig. 1 might at a first glance indicate a one-dimensional problem,
which would be governed by a set of ODEs, it is important to note
that surfaces at the north and south boundaries in Fig. 1b,c are solid
walls, over which boundary conditions given by Eqs. (20) and (21)
apply. As such, two-dimensional boundary layers will grow along
the walls distorting both temperature fields requiring two-dimen-
sional elliptical solvers, which demand 2D control volumes such as
the one depicted in Fig. 2. In fact, in an accompanying paper
simulation of a moving bed in cross-flow was presented [21],
which required a full two-dimensional model as the one here
adopted. As mentioned earlier, all results below are presented
along the x-direction and are plotted at the channel mid-height
y/H = 0.5.

2.1. Effect of Reynolds number, ReD

Figs. 3 and 4 show values for the longitudinal non-dimensional
temperature profiles and for non-dimensional turbulent kinetic
energy hkiv=j�uDj2, Fig. 3c,d and Fig. 4c,d along the channel mid-
height for a moving bed as a function of ReD, using the both High
and Low Reynolds models.

Both High and Low Reynolds numbers were calculated based on
relative velocity �urel for a fixed slip ratio uS=�uD ¼ 0:5 and porosity /
= 0.6. As such, for increasing ReD while keeping uS=�uD constant,
both the fluid and the solid phases had to increase according to
the relationship for counterflow turbulent,

ReD ¼
q�urelD

l
¼ q�uDD

l
1� uS

�uD

� 	
¼ Re 1� uS

�uD

� 	
ð35Þ

in this case, the fluid velocity �uD, that is given by �uD ¼ / < �u>i,
increases, so there is an increase in the intrinsic fluid velocity
< �u>i, reflecting a greater conversion of mechanical kinetic energy
into turbulence.

Fig. 3a and Fig. 4a indicate that the cold fluid is heated up as it
permeates the hot porous structure, which moves in the opposite
direction of the fluid. It is observed that the higher the relative Rey-
nolds number, resulting from increasing the opposing mass flow
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Fig. 8. Non-dimensional temperatures and turbulent kinetic energy for Low Reynolds number turbulence model as a function of Da, with uS=�uD ¼ �0:5, (qcp)s/(qcp)f = 1, ks/
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rates of both the fluid and the solid, with consequent increase on the
relative velocity between the phases, more energy is convected into
the system increasing the temperature difference between the
phases along the channel. Although an increase in ReD reflects in
an increase in hi, Eq. (19), resulting in a stronger interstitial heat ex-
change, the imposed elevation of both mass flow rates in order to
keep uS=�uD ¼ �0:5 will result in larger temperature differences for
the same length of the reactor. The corresponding effect is seen in
Fig. 3b and Fig. 4b when both flows have their directions reversed.
This behavior is the same for High and Low Reynolds models.

Fig. 3c,d and Fig. 4c,d show that when the relative velocity �urel

increases, the amount of fluid disturbance past the solid obstacles
increases, implying then in a rise of the final level of hkii, according
to Gi ¼ ckq/hkiij�uDj=

ffiffiffiffi
K
p

for High and Low Reynolds turbulence
models regardless the sense of the flow.
2.2. Effect of slip ratio, us=�uD

Figs. 5 and 6 show values for the longitudinal non-dimensional
temperature profiles hf, hs and for non-dimensional turbulent
kinetic energy hkiv=j�uDj2 along the channel mid-height for a mov-
ing bed, as a function of us=�uD. It is observed in Fig. 5a and
Fig. 6a that the fluid speed was kept constant in one direction
(Re = 1.292 � 106 for High Reynolds and Re = 9.687 � 104 for Low
Reynolds) and the solid speed, in the opposite direction, was varied
leading to the increase of absolute values of uS=�uD. It is noted that
for higher absolute values of uS=�uD, or say, higher relative velocities
�urel ¼ �uD � uS, heating of the fluid is more efficient, raising its tem-
perature at the fluid exit. The Fig. 5a and Fig. 6a indicate that
increasing uS=�uD, more thermal energy is brought into the system
by the solid phase, leading to an increase in the solid temperature
at a certain axial position x/L. Due to a greater ReD, which is based
on �urel, better interstitial heat transfer is obtained, raising the fluid
temperature at the same axial location. In all cases, it is observed
that the outlet temperature of the fluid is greater than the outlet
temperature of the solid. The corresponding effect is seen in
Fig. 5b and Fig. 6b when both flows have their directions reversed.
This behavior is the same for High and Low Reynolds models.

Fig. 5c,d and Fig. 6c,d indicate the increasing of turbulence
kinetic energy hkiv=j�uDj2 as the absolute values of uS=�uD rises. As
the relative velocity �urel increases, the amount of disturbance past
the solid obstacles is increased, implying then in a rise of the final
level of hkii for High and Low Reynolds models.
2.3. Effect of Darcy number, Da

Figs. 7 and 8 present the effect of particle diameter D on the
axial temperature profiles and non-dimensional turbulent kinetic
energy hkiv=j�uDj2 along the channel mid-height. For a give particle
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diameter, permeability is given according to the Ergun (1952) [20]
equation:

K ¼ D2/2

144ð1� /Þ2
ð36Þ

leading to a Darcy number Da ¼ K=H2 where H is the height of
channel. The Reynolds number and the porosity are kept constant
for all curves. It is observed in Fig. 7a) and Fig. 8a) that a reduction
in K means an increase in flow resistance. It is observed in Fig. 7a)
and Fig. 8a) that for a small permeability, or small Da = K/H2 as a re-
sult of a decrease of particle diameter while keeping the porosity
constant, a larger interfacial heat transfer area promotes energy
transfer along the channel, resulting then in a more efficient heat
exchange between phases. This can be observed that the outlet tem-
perature of the fluid is greater than the outlet temperature of the
solid. The corresponding effect is seen in Fig. 7b) and Fig. 8b) when
both flows have their directions reversed. This behavior is the same
for High and Low Reynolds models.

The permeability of the medium exerts an effect on the level of
turbulent kinetic energy along the channel, since it determines the
facility that the fluid has to flow. Fig. 7c,d) and Fig. 8c,d) show the
non-dimensional turbulent kinetic energy hkiv=j�uDj2. It is observed
that the higher the permeability, keeping fixed the relative velocity
and the porosity, there is a decrease of the final level of hkii, for
High and Low Reynolds models. It is observed also that the
decreasing of hkii happen mainly next to the entrance of the
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Fig. 9. Non-dimensional temperatures and turbulent kinetic energy for High Reynolds nu
and Re = 6.458 � 105: (a), (c) Flow moving west to east, (b), (d). Flow moving east to we
channel for High and Low Reynolds models. It does not matter
the direction of flow in the counterflow configuration, the behavior
is the same along the channel. It is noticed that the influence on the
variation of the turbulent kinetic energy is more significant in the
fluid inlet. Along the channel the final level of hkii is constant.
2.4. Effect of porosity, /

Figs. 9 and 10 show values for the longitudinal non-dimensional
temperature profiles and for non-dimensional turbulent kinetic
energy hkiv=j�uDj2 along the channel mid-height for a moving bed,
as a function of porosity /. The Reynolds number ReD, the velocity
ratio between the solid and fluid phases uS=�uD ¼ �0:5 and the ratio
of thermal capacity (qcp)s/(qcp)f = 1 are kept constant for all curves.
The Fig. 9a) and Fig. 10a) indicate that, for low porosities, a better
heat exchange is obtained between phases. For a fixed Reynolds
number, a decrease in porosity corresponds to an increase on the
interfacial heat transfer coefficient hi, Eq. (19). Also, for a fixed Rey-
nolds number based on uD = / < u >i, a decrease in porosity corre-
sponds to an increase in the intrinsic fluid velocity huii, reflecting
a greater conversion of mechanical kinetic energy into turbulence,
which further rises the cooling effect by raising the interfacial heat
transfer coefficient hi between phases. Consequently, the product
hiai will increase as porosity / decreases, enhancing the ability of
the solid phase to heat up the colder fluid. Moreover, the lower
the porosity, i.e., the greater the amount of solid material per total
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Fig. 10. Non-dimensional temperatures and turbulent kinetic energy for Low Reynolds number turbulence model as a function of /, with uS/uD = �0.5, ks/kf = 25,
ReD = 2.5 � 103 and Re = 3.229 � 104: (a), (c) Flow moving west to east, (b), (d). Flow moving east to west.
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Fig. 11. Non-dimensional temperatures for High Reynolds number turbulence model as a function of (qcp)s/(qcp)f, with uS=�uD ¼ �0:5, ks/kf = 25, / = 0.6, ReD = 5 � 104,
Re = 6.458 � 105: (a) Flow moving west to east, (b). Flow moving east to west.
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volume, the fluid temperature will be closer to that of the solid
temperature along the channel, which is caused by a greater
exchange of heat between phases. This can be observed that the
outlet fluid temperature is greater than the solid temperature at
exit for all values of porosity used. The corresponding effect is seen
in Fig. 9b) and Fig. 10b) when both flows have their directions
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Fig. 12. Non-dimensional temperatures for Low Reynolds number turbulence model as a function of (qcp)s/(qcp)f, with uS=�uD ¼ �0:5, ks/kf = 25, / = 0.6, ReD = 2.5 � 103,
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reversed. This behavior is the same for High and Low Reynolds
models.

Fig. 9c,d) and Fig. 10c,d) show the non-dimensional turbulent
kinetic energy hkiv=j�uDj2. It is observed that the higher the porosity,
keeping fixed the relative velocity and the permeability, there is a
decrease of the final level of hkii for High and Low Reynolds models.
It does not matter the direction of flow in the counterflow config-
uration, the behavior is the same along the channel.

2.5. Effect of thermal capacity ratio (qcp)s/(qcp)f

Figs. 11 and 12 show values for the longitudinal non-dimen-
sional temperature profiles along the channel mid-height for a
moving bed, as a function of thermal capacity ratio (qcp)s/(qcp)f.
The density and specific heat of the fluid are kept constant given
by qf = 0.4345 kg/m3 and cpf = 1986.8 J/kgK, respectively. It is ob-
served in Fig. 11a) and Fig. 12b) that when the heat capacity of the
solid is greater than the fluid, the solid temperature presents less
variation in temperature across the reactor. When the thermal
capacity of the solid (qcp)s is high, more energy exchange is
needed to vary the temperature of the solid by a certain amount.
Also, for all cases, the outlet fluid temperature is greater than the
value of the solid temperature at the exit. For the highest ratio ana-
lyzed, (qcp)s/(qcp)f = 10.0, the solid temperature undergoes the
least variation, as expected. The corresponding effect is seen in
Fig. 11b) and Fig. 12b) when both flows have their directions re-
versed. This behavior is the same for High and Low Reynolds
models.

How the variation of the thermal capacity ratio does not affect
the final level of the kinetic energy, this effect is not shown here.

2.6. Effect of thermal conductivity ratio ks/kf

Figs. 13 and 14 show values for the longitudinal non-dimen-
sional temperature profiles along the channel mid-height for a
moving bed, as a function of thermal conductivity ratio ks/kf. For
a fixed solid substrate, us/uD = 0 (Fig. 13a and Fig. 14a), one note
that the higher the ratio ks/kf, the stronger is the axial conduction
through the solid, raising its temperature and, consequently,
heating up the fluid at the outlet.

With the slow movement of the solid bed, us/uD =�0.1, Fig. 13c,d
and Fig. 14c,d show that the solid temperature is raised not only by
axial conduction along the bed, but also due to increase of the fluid
temperature due to a better exchange of heat between phases, an
effect caused by increase of the interfacial heat transfer coefficient
hi, which, in turn, is a result of increasing the relative velocity and,
consequently, ReD. As a result, values of both the fluid and the solid
temperatures along the channel increase with ks/kf. Compared to
the previous case for us/uD = 0, the effect of ks/kf now seems to be
of a lesser importance since inter-phase heat transport starts to
play a role in temperature distributions as the solid velocity in-
creases. Such conclusion becomes more evident for us/uD = �0.4
(Fig. 13e,f and Fig. 14e,f), when the ratio of thermal conductivity
causes little influence on the temperature distribution within each
phase along the channel. For high solid mass flow rates, with abso-
lute values of us/uD approaching to 1, there is a better heat ex-
change between the phases along the channel, regardless of the
value of the thermal conductivity of the solid. This behavior is
the same for High and Low Reynolds models.

The variation of ks/kf does not affect the turbulent kinetic energy
for this reason they are not presented here. In the case of the fluid
and solid temperatures, it is observed, according to the results
obtained here, that the movement of the solid material contrary
to the direction of the fluid, with higher ReD or slip ratio uS/uD,
enhances heat transfer between phases.
3. Conclusions

This paper investigated the behavior of a two-energy equation
model to simulate the influence of physical properties on heat
transfer between solid and fluid phases in a turbulent moving
bed counterflow using the High and Low Reynolds models, in
which the working fluid flows in opposite direction with respect
to the permeable medium. Numerical solutions for turbulent flow
in a moving porous bed were obtained for different Reynolds num-
ber ReD, slip ratio us=�uD, Darcy number Da, porosity /, ratio of ther-
mal capacity (qcp)s/(qcp)f and of ratio of thermal conductivity ks/kf,
ranging the slip ratio us=�uD.

Governing equations were discretized and numerically solved.
It is observed, according with the results obtained, that the heat
exchange between phases is more efficient when compared with
parallel flow cases. Movement of the solid material contrary to
the direction of the fluid, with higher ReD or slip ratio uS/uD, en-
hances heat transfer between phases. Same effect was observed
for smaller Da, smaller /, and higher (qcp)s/(qcp)f and ks/kf. This
results are similar with those showed in [10] for laminar
counterflow.
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Fig. 13. Non-dimensional temperatures for High Reynolds number turbulence model as a function of ks/kf, with / = 0.6, Da = 1.665 � 10�4, (qcp)s/(qcp)f = 1, ReD = 5 � 104: (a),
(c), (e) Flow moving west to east, (b), (d), (f). Flow moving east to west.
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For high values of ReD and high absolute values of us=�uD the
higher the final level of hkii, in other hand, for high values of Da
and / the smaller the final level of hkii. The similar behavior was
observed for High and Low Reynolds model.
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Fig. 14. Non-dimensional temperatures for Low Reynolds number turbulence model as a function of ks/kf, with / = 0.6, Da = 1.665 � 10�4, (qcp)s/(qcp)f = 1, ReD = 2.5 � 103: (a),
(c), (e) Flow moving west to east, (b), (d), (f). Flow moving east to west.
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