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This paper presents an analysis of macroscopic heat and mass transport for turbulent flow in permeable struc-
tures, which is based on the thermal non-equilibrium assumption between the porous matrix and the working
fluid. Two driving mechanisms are here considered to contribute to the overall momentum transport, namely
fluid-temperature driven and concentration driven mass fluxes. The fluid temperature, however, is also affected
by the solid temperature distribution as the two phases exchange heat through their interfacial area. Essentially,
here the double-diffusive natural convection mechanism is investigated for the fluid phase in turbulent regime.
Equations are presented based on the double-decomposition concept, which considers both time fluctuations
and spatial deviations about mean values. This work intends to demonstrate that additional transport mecha-
nisms are mathematically derived if velocity, fluid temperature and mass concentration simultaneously present
time fluctuations and spatial deviations about average values. A modeled form for the entire set of transport
equations is presented where turbulent transfer is based on a macroscopic version of the k–ε model.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Analyses of double-diffusive phenomena in free convection in
permeable media has many environmental and industrial applications,
such as in oil and gas extraction, movement of gas concentration into
the ground, contaminant dispersion in soils, grain storage and drying,
petrochemical processes, electrochemical processes, to mention a few
[1–9]. In some specific applications, the voids are large enough and
the fluid mixture may become turbulent. In such instances, difficulties
arise in the proper mathematical modeling of the transport processes
under both temperature and concentration gradients.

Usually, modeling of macroscopic transport for incompressible flows
in rigid porous media has been based on the volume-average methodol-
ogy for either heat or mass transfer [10–14]. If fluctuations in time are
also of concern due the existence of turbulence in the intra-pore space,
a variety of mathematical models have been published in the literature
in the last decade. One of such views, which entails simultaneous applica-
tion of both time and volume averaging operators to all governing
equations, has beenorganized andpublished in a book [15] that describes,
in detail, an idea known in the literature as the double-decomposition
concept (see chapter 3, pgs. 27–32 in ref. [15] for details).

In an earlier work [16], double-diffusive effects in porous media have
been treated considering thermal equilibriumbetween the porousmatrix
and the permeating fluid. Or say, in ref. [16] the fluid temperate was as-
sumed to be the same of that of the solid when analyzing double-
diffusive mechanisms. Later [17], buoyancy-free flows were investigated
ghts reserved.
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with the so-called two-energy-equation model, or 2EEM for short,
which is based on the Local Thermal Non-equilibrium Hypothesis
(LTNE) meaning that the average temperature of the fluid is not equal
to the average temperature of the solid matrix However, in ref. [17] no
double-diffusion was considered.

Therefore, the purpose of this contribution is to extend the work in
ref. [16] on turbulent double-diffusion using only one energy equation,
assuming now the thermal non-equilibrium hypotheses in ref. [17],
which requires an independent energy balance for each phase. As
such, the expectation herein is that, by combining now such twomodels
that were developed on separate, a larger number of physical processes
can now be more realistically tackled.

2. Local instantaneous transport equation

The steady-state local (microscopic) instantaneous transport equa-
tions for an incompressible binary fluidmixture with constant properties
flowing in an inert heterogeneousmedium are given in details elsewhere
and for that, they will be just repeated here. They read:

within the fluid:

Continuity∇ � u ¼ 0 ð1Þ

Momentumρ∇ � uuð Þ ¼ −∇pþ μ∇2uþ ρg ð2Þ

Energy‐fluidphase ρcp
� �

f
∇ � uT f

� �n o
¼ ∇ � kf∇T f

� �
þ Sf : ð3Þ

Mass concentration ρ∇ � umℓ þ Jℓð Þ ¼ ρRℓ ð4Þ
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http://dx.doi.org/10.1016/j.icheatmasstransfer.2014.01.017
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Nomenclature

cF Forchheimer coefficient
Cℓ volumetric molar concentration
cp specific heat
Dℓ diffusion coefficient
Ddisp Mass dispersion
Ddisp,t turbulent mass dispersion
Dt turbulent mass flux
g gravity acceleration vector
I unity tensor
Jℓ mass diffusion coefficient
k turbulent kinetic energy per unit mass, k ¼ u′ � u′=2
bkNi intrinsic (fluid) average of k
K permeability
ℓ chemical species
mℓ mass fraction of component ℓ
Mℓ molar weight of component ℓ
p pressure
Prt turbulent Prandtl number
Sct turbulent Schmidt number
T temperature
u mass-averaged velocity of the mixture
uD Darcy velocity vector
uℓ velocity of species ℓ

Greek symbols
β thermal expansion coefficient
βC salute expansion coefficient
βϕ macroscopic thermal expansion coefficient
βCϕ macroscopic salute expansion coefficient
λ fluid thermal conductivity
μ fluid mixture viscosity
μt Turbulent viscosity
μtϕ macroscopic turbulent viscosity
ε dissipation rate of k
〈ε〉i intrinsic (fluid) average of ε
ρ bulk density of the mixture
ρℓ mass density of species ℓ
ϕ porosity

Subscripts
β buoyancy
ℓ chemical species
t turbulent
ϕ macroscopic
C concentration

Superscripts
i intrinsic (fluid) average
v volume (fluid + solid) average
k turbulent kinetic energy
s,f solid, fluid

133M.J.S. de Lemos / International Communications in Heat and Mass Transfer 52 (2014) 132–139
within the solid:

Energy‐solid shase porousmatrixð Þ0 ¼ ∇ � ks∇Tsð Þ þ Ss : ð5Þ

where u is themass-averaged velocity of the mixture,u ¼ ∑
ℓ

mℓuℓ, uℓ

is the velocity of species ℓ, mℓ is the mass fraction of component ℓ,
defined as mℓ = ρℓ/ρ, ρℓ is the mass density of species ℓ (mass of ℓ
over total mixture volume), ρ is the bulk density of the mixture

ρ ¼ ∑
ℓ

ρℓ

� �
, p is the pressure, μ is the fluid mixture viscosity, g is the

gravity acceleration vector, cp is the specific heat, the subscripts f and s
refer to fluid and solid phases, respectively, Tf and Ts are the fluid and
solid temperature, kf and ks are the fluid and solid thermal conductivi-
ties and S is the heat generation term. If there is no heat generation ei-
ther in the solid or in the fluid, one has further Sf = Ss = 0. The
generation rate of species ℓ per unit of mixture mass is given in
Eq. (4) by Rℓ. Also, as pointed out in ref. [16], an alternative way of writ-
ing the mass transport equation is using the volumetric molar concen-
tration Cℓ (mol of ℓ over total mixture volume), the molar weight Mℓ

(g/mol of ℓ) and the molar generation/destruction rate Rℓ
∗ (mol of ℓ/

total mixture volume), giving:

Mℓ∇ � u Cℓ þ Jℓð Þ ¼ MℓR
�
ℓ: ð6Þ

Further, the mass diffusion flux Jℓ (mass of ℓ per unit area per unit
time) in Eq. (4) or (6) is due to the velocity slip of species ℓ,

J ¼ ρℓ uℓ−uð Þ ¼ −ρℓDℓ∇mℓ ¼ −MℓDℓ∇Cℓ ð7Þ

where Dℓ is the diffusion coefficient of species ℓ into the mixture. The
second equality in Eq. (7) is known as Fick's Law, which is a constitutive
equation strictly valid for binary mixtures under the absence of any
additional driving mechanisms for mass transfer [10]. Therefore, no
Soret or Dufour effects are here considered.

Rearranging Eq. (6) for an inert species, dividing it by Mℓ and
dropping the index ℓ for a simple binary mixture, one has,

∇ � u Cð Þ ¼ ∇ � D∇Cð Þ: ð8Þ

If one considers that the density in the last termof Eq. (2) varieswith
fluid temperature and concentration, for natural convection flow, the
Boussinesq hypothesis reads, after renaming this density ρT,

ρT ≅ ρ 1−β T f−Tref

� �
−βC C−Cref

� �h i
ð9Þ

where the subscript ref indicates a reference value and β and βC are the
thermal and salute expansion coefficients, respectively, defined by,

β ¼ − 1
ρ
∂ρ
∂T f

�����
p;C

;βC ¼ −1
ρ
∂ρ
∂C

�����
p;T f

: ð10Þ

Here, it is interesting to point out that in ref. [16] the temperature
used in Eq. (9) was the same as that of the solid, T = Tf = Ts. Further,
it is important to note that, as it is going to be shown below, after
volume averaging Eqs. (3) and (5), Tf is going to be related to Ts due to
the exchange of heat between the two phases across the interstitial
area. Also, Eq. (9) is an approximation of Eq. (10) and shows how
density varies with the fluid temperature and mass concentration in
the body force term of the momentum equation.Substituting now
Eq. (9) into Eq. (2), one has,

ρ∇ � uuð Þ ¼ −∇pþ μ∇2uþ ρg 1−β T f−Tref

� �
−βC C−Cref

� �h i
: ð11Þ

Thus, the momentum equation becomes after some rearrangement,

ρ∇ � uuð Þ ¼ − ∇pð Þ� þ μ∇2u−ρg ðβ T f−Tref

� �
þ βC C−Cref

� �h i
ð12Þ

where (∇p)⁎ = ∇p − ρg is a modified pressure gradient.
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3. Time and volume average operators— The double
decomposition concept

For the sake of completeness, although the information below has
been given in detail in a number of articles and books, including [15]
for example, it is convenient to recall the definition of time average
and volume average.

The time average of a general quantity φ is defined as:

φ ¼ 1
Δt

Z tþΔt

t
φdt ð13Þ

where the time interval Δt is small compared to the fluctuations of the
average value, φ, but large enough to capture turbulent fluctuations of
φ. Time decomposition can then be written as,

φ ¼ φþ φ′ ð14Þ

with φ′ ¼ 0. Here, φ′ is the time fluctuation of φ around its average φ.
Further, the volume average of φ taken over a Representative

Elementary Volume (REV, Fig. 1) in a porous medium can be written
as [18–20]:

φh iv ¼ 1
ΔV

Z
ΔV

φdV : ð15Þ

The value 〈φ〉v is defined for any point x surrounded by a REV of size
ΔV. This average is related to the intrinsic average for the fluid phase as:

φ f

D Ev ¼ ϕ φ f

D Ei ð16Þ

where ϕ = ΔVf / ΔV is the medium porosity and ΔVf is the volume
occupied by the fluid in a REV. Furthermore, one can write:

φ ¼ φh ii þ iφ ð17Þ

with 〈iφ〉i = 0. In Eq. (17), iφ is the spatial deviation of φwith respect to
the intrinsic average 〈φ〉i.
Fig. 1. Representative elementary volume (R.E.V.), intrinsi
Further, the local volume average theorem can be expressed as
[18–20]:

∇φh iv ¼ ∇ ϕ φh ii
� �

þ 1
ΔV

Z
Ai

niφdS

∇ �φh iv ¼ ∇ � ϕ φh ii
� �

þ 1
ΔV

Z
Ai

ni �φdS

∂φ
∂t

� �v

¼ ∂
∂t ϕ φh ii

� �
− 1

ΔV

Z
Ai

ni � uiφð ÞdS

ð18Þ

where ni is the unit vector normal to the fluid–solid interface, pointing
from the fluid towards the solid phase, Ai is the fluid–solid interface
area within the REV. It is important to emphasize that Ai should not be
confused with the surface area surrounding volume ΔV. In ref. [15] it
is shown that for a rigid, homogeneous porous medium saturated
with an incompressible fluid, the following relationships apply:

φh ii ¼ φh ii

φ ¼ iφ

φ′
	 
i ¼ φh ii ′:

ð19Þ

Therefore, a general quantity φ can be expressed by either,

φ ¼ φh ii þ φh ii′ þ iφþ iφ′ ð20Þ

or

φ ¼ φh ii þ iφþ φ′
	 
i þ iφ′: ð21Þ

Expressions (20) and (21) encompass what is recalled in the litera-
ture as the “double decomposition” concept where iφ′ can be under-
stood as either the time fluctuation of the spatial deviation or the spatial

deviation of the time fluctuation. Also, iφ′
D Ei

¼ iφ′ ¼ 0.
c average; space and time fluctuations (see ref. [15]).
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4. Time averaged transport equations

In order to apply the time average operator to Eqs. (1), (3), (5), (8)
and (12), one considers,

u ¼ uþ u′
; T f ¼ T f þ T ′

f ; Ts ¼ Ts þ T ′
s;C ¼ C þ C′

; p ¼ pþ p0: ð22Þ

Substituting Eq. (22) into the governing equations and considering
constant properties for both the fluid and the solid,

∇ � u ¼ 0 ð23Þ

ρ∇ � uuð Þ ¼ − ∇pð Þ� þ μ∇2uþ∇ � −ρu′u′
� �

− ρg β T f−Tref

� �
þ βC C−Cref

� �h i ð24Þ

ρcp
� �

f
∇ � uT f

� �
¼ ∇ � k∇T f

� �
þ∇ � −ρcpu

′T ′
f

� �
ð25Þ

0 ¼ ∇ � ks∇Ts

� �
: ð26Þ

∇ � u C
� �

¼ −∇ � D∇C
� �

þ∇ � −u′ C′
� �

ð27Þ

For clear fluid, the use of the eddy-diffusivity concept for expressing
the stress–strain rate relationship for the Reynolds stress appearing in
Eq. (24) gives,

−ρu0u0 ¼ μ t2D−
2
3
ρk I ð28Þ

whereD ¼ ∇uþ ∇uð ÞT
h i

=2 is the mean deformation tensor, k ¼ u0 � u0=

2 is the turbulent kinetic energy per unitmass, μ t is the turbulent viscosity
and I is the unity tensor. Similarly, for the turbulent heat flux on the r.h.s.
of Eqs. (25) and (27) the eddy diffusivity concept reads,

−ρcpu
′ T ′

f ¼ cp
μt

Prt
∇T f ;−ρu′ C′ ¼ μ t

Sct
∇C ð29Þ

where Prt and Sct are known as the turbulent Prandtl and Schmidt
numbers, respectively.

Further, a transport equation for the turbulent kinetic energy is
obtained by multiplying first, by u′, the difference between the instanta-
neous and the time-averaged momentum equations. Thus, applying
further the time average operator to the resulting product, one has,

ρ∇ � ukð Þ ¼ −ρ∇ � u′ p′

ρ
þ q

� � �
þ μ∇2kþ P þ GT þ GC − ρε ð30Þ

whereP ¼ −ρu′u′ : ∇u is the generation rate of k due to gradients of the
mean velocity and

GT ¼ −ρβg � u′T ′
f ¼ β

μt

Prt
g �∇T f ð31Þ

GC ¼ −ρβC g � u′C′ ¼ βC
μ t

Sct
g �∇C ð32Þ

are the thermal and concentration generation rates of k due to tempera-
ture and concentration fluctuations, respectively. Also, q = u′ ∙ u′/2
and, on the right of Eqs. (31) and (32), the models in Eq. (29) have
been applied.
5. Macroscopic equations for buoyancy free flows

5.1. Mean continuity equation

When the average operators (13)–(15) are simultaneously applied
over Eqs. (1)–(2), macroscopic equations for turbulent flow are obtained.
Volume integration is performed over a Representative Elementary
Volume (REV) shown in Fig. 1 resulting in,

∇ � uD ¼ 0 : ð33Þ

where, uD ¼ ϕ uh ii and uh ii identifies the intrinsic (liquid) average of the
time-averaged velocity vector u.

For non-buoyant flows, macroscopic equations considering turbu-
lence have been already derived in detail for momentum, heat, and
mass transfer [15] and for this reason their derivation need not to be
repeated here. They are read as follows.

6. Mean momentum transport

ρ∇ � uDuD

ϕ

� �
¼ −∇ ϕ ph ii

� �
þ μ∇2uD þ∇ � −ρϕ u′u′

D Ei
� �

− μϕ
K

uD þ cFϕρ juDjuDffiffiffiffi
K

p
 � ð34Þ

−ρϕ u′u′
D Ei ¼ μtϕ

2 D
	 
v−2

3
ϕρ kh iiI ð35Þ

D
	 
v ¼ 1

2
∇ ϕ uh ii
� �

þ ∇ ϕ uh ii
� �h iTn o

kh ii ¼ u′ � u′
D Ei

=2
ð36Þ

μ tφ
¼ ρ cμ f μ

kh ii2
εh ii ð37Þ

where cμ is a constant and fμ is damping function to be presented later.

7. Macroscopic turbulence field

The intrinsic turbulent kinetic energy per unit mass and its dissipa-
tion rate are governed by the following equations,

ρ
∂
∂t ϕ kh ii

� �
þ∇ � uD kh ii

� � �
¼ ∇ � μ þ

μtϕ

σk

� �
∇ ϕ kh ii
� � �

−ρ u′u′
D Ei

: ∇uD

þ ckρ
ϕ kh ii juDjffiffiffiffi

K
p −ρϕ εh ii

ð38Þ

ρ
∂
∂t ϕ εh ii

� �
þ∇ � uD εh ii

� � �
¼ ∇ � μ þ

μtφ

σε

� �
∇ ϕ εh ii
� � �

þ c1 −ρ u′u′
D Ei

: ∇uD

� �
εh ii
kh ii

þ c2 ckρ
ϕ εh ii juDjffiffiffiffi

K
p −c2 f 2ρϕ

εh ii2
kh ii

ð39Þ

where the c's are constants and f2 is a another damping function. Usual-
ly, two forms of the k–εmodel are employed, namely theHigh Reynolds
(Launder and Spalding [21]) and Low Reynolds number (Abe et al. [22])
turbulence models. The constants and formulae used as damping func-
tions are showed in Table 1.

8. Two-energy equation model (2EEM)

Similarly, macroscopic energy equations are obtained for both fluid
and solid phases by applying time and volume average operators to



Table 1
Damping functions and constants for turbulence models.

High Reynolds turbulence model proposed
by Launder and Spalding [21]

Low Reynolds turbulence model proposed by
Abe et al. [22]

fμ 1.0
1− exp − νεð Þ0:25y

14ν

h in o2
1þ 5

k2=νεð Þ0:75 exp − k2=νεð Þ
200

� �2
" #( )

f2 1.0
1− exp − νεð Þ0:25y

3:1ν

h in o2
1−0:3 exp − k2=νεð Þ

6:5

� �2
" #( )

σk 1.0 1.4
σε 1.33 1.3
c1 1.44 1.5
c2 1.92 1.9
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Eqs. (3) and (5). As in the flow case, volume integration is performed
over a Representative Elementary Volume (REV), resulting in,

ρcp
� �

f
∇ � ϕ uh ii T f

D Ei þ iuiT
D Ei

|fflfflfflffl{zfflfflfflffl}
thermal disperson

þ u′
	 
i T ′

f

D Ei

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
turbulent heat
flux

þ iu′ iT ′
D Ei

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
turbulent thermal
disperson

0
BBBBB@

1
CCCCCA

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼

∇ � kf∇ ϕ T f

D Ei
� �

þ 1
ΔV

Z
Ai

ni k f T f dA

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
conduction

þ 1
ΔV

Z
Ai

ni � kf∇T f dA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interfacial heat transfer

ð40Þ

where the expansion,

u′T ′
f

D Ei ¼ u′
	 
i þ iu′

� �
T ′
f

D Ei þ iT ′

� �* +i

¼ u′
	 
i T ′

f

D Ei þ iu′ iT ′
D Ei

ð41Þ

has been used in light of the double decomposition concept given by
Eqs. (19)–(21) (see ref. [15] for details). For the solid phase, one has,

0 ¼ ∇ � ks∇ 1−φð Þ Ts

	 
ih i
− 1

ΔV

Z
Ai

ni ksTs dA

8><
>:

9>=
>;

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
conduction

− 1
ΔV

Z
Ai

ni � ks∇Ts dA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
interfacial heat transfer

:

ð42Þ

In Eqs. (40) and (42), Ts
	 
i

and T f
	 
i

denote the intrinsic time-
average temperature of solid and fluid phases, respectively. These equa-
tions are the macroscopic energy balances for the fluid and the porous
matrix (solid), respectively.

Also, in order to use Eqs. (40) and (42), the underscored terms have
to be modeled as a function of Ts

	 
i
and T f

	 
i
. To accomplish this, a

gradient type diffusion model is used for all terms not involving the
interfacial heat transfer, in the form,

Turbulentheatflux : − ρcp
� �

f
ϕ u′

	 
i T ′
f

D Ei
� �

¼ Kt �∇ T f

D Ei ð43Þ

Thermaldispersion : − ρcp
� �

f
ϕ iuiT

D Ei
� �

¼ Kdisp �∇ T f

D Ei ð44Þ

Turbulent thermal dispersion : − ρcp
� �

f
ϕ iu′ iT ′

D Ei
� �

¼ Kdisp;t �∇ T f

D Ei

ð45Þ
Localconduction :

∇ � 1
ΔV

Z
Ai

ni k f T f dA

2
64

3
75 ¼ K f ;s �∇ Ts

	 
i

−∇ � 1
ΔV

Z
Ai

ni ksTs dA

2
64

3
75 ¼ Ks; f �∇ T f

D Ei

: ð46Þ

Finally, Eqs. (40) and (42) can be rewritten using the concept of
overall effective conduction in the form,

ρcp
� �

f
∇ � uD T f

D Ei
� �

¼ ∇ � Keff ; f �∇ T f

D Ei
� �

þ 1
∇V

Z
Ai

ni � kf∇T f dA

ð47Þ

0 ¼ ∇ � Keff ;s �∇ Tsh ii
n o

− 1
ΔV

Z
Ai

ni � ks∇Ts dA ð48Þ

where

Keff ; f ¼ ϕkf

h i
Iþ K f ;s þ Kt þ Kdisp þ Kdisp;t ð49Þ

Keff ;s ¼ 1−ϕð Þks½ � Iþ Ks; f ð50Þ

The turbulent heat flux and turbulent thermal dispersion terms, Kt

and Kdisp,t, are here modeled through the Eddy diffusivity concept as
[17]:

Kt þ Kdisp;t ¼ ϕ ρcp
� �

f

νtφ

Prtφ
I ð51Þ

where Prtϕ is themacroscopic turbulent Prandtl number for thefluid en-
ergy equation.

9. Interfacial heat transfer, hi

In Eqs. (40) and (42) the heat transferred between the two phases
can be modeled by means of a film coefficient hi such that,

hiai Tsh ii− T f

D Ei
� �

¼ 1
∇V

Z
Ai

ni � kf∇T f dA ¼ 1
ΔV

Z
Ai

ni � ks∇Ts dA ð52Þ

where ai = Ai / ΔV is the interfacial area per unit volume. In porous
media, the high values of ai make them attractive for transferring
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thermal energy via conduction through the solid followed by
convection to a fluid stream.

ρcp
� �

f
∇ � uD T f

D Ei
� �

¼ ∇ � Keff ; f �∇ T f

D Ei
� �

þ hiai Ts

	 
i− T f

D Ei
� �

;

ð53Þ

0 ¼ ∇ � Keff ;s �∇ Ts

	 
in o
−hiai Ts

	 
i− T f

D Ei
� �

: ð54Þ

Wakao et al. [23]. proposed a correlation for hi for closely packed bed
and compared results with their experimental data. This correlation
reads,

hiD
kf

¼ 2þ 1:1Re0:6D Pr1=3 : ð55Þ

Kuwahara et al. [24] also obtained the interfacial convective heat
transfer coefficient for laminar flow, as follows,

hiD
kf

¼ 1þ 4 1−ϕð Þ
ϕ

� �
þ 1
2

1−ϕð Þ1=2ReDPr1=3; valid for 0:2 bϕ b 0:9;

ð56Þ

Eq. (56) is based on porosity dependency and is valid for packed
beds of particle diameter D.

Following this same methodology, in which the porous medium is
considered an infinite number of solid square rods, Saito and de
Lemos [25] proposed a correlation for obtaining the interfacial heat
transfer coefficient for turbulent flow as,

hiD
kf

¼ 0:08
ReD
ϕ

� �0:8
Pr1=3; for 1:0x104

b
ReD
ϕ

b 2:0x107; valid for 0:2 bϕ b 0:9;

ð57Þ

Table 2 shows three variant correlations for the fluid to solid heat
transfer coefficienthi and the specific surface area of theporousmedium
ai, which appears in both energy equations.

10. Mass transport

∇ � uD C
D Ei

� �
¼ ∇ � Deff �∇ ϕ C

D Ei
� �

ð58Þ

Deff ¼ Ddisp þ Ddiff þ Dt þ Ddisp;t ð59Þ

Ddiff ¼ Dh iiI ¼ 1
ρ
μϕ

Sc
I ð60Þ

Dt þ Ddisp;t ¼
1
ρ

μ tϕ

Sctϕ
I ð61Þ

where Sctϕ is a macroscopic turbulent Schmidt number.
Table 2
Correlations for heat transfer coefficient and fluid-to-solid specific area ai.

Reference Correlation eqn.

Wakao et al. [21]. hiD
k f

¼ 2þ 1:1Re0:6D Pr1=3 (55)

Kuwahara et al. [24]. hiD
k f

¼ 1þ 4 1−ϕð Þ
ϕ

� �
þ 1

2 1−ϕð Þ1=2ReDPr
Saito and de Lemos [25] hiD

k f
¼ 0:08 ReD

ϕ

� �0:8
Pr1=3 (57)
Coefficients Ddisp, Dt and Ddisp,t in Eq. (58) appear due to the non-
linearity of the convection term. They come from themodeling of the
following mechanisms:

• Mass dispersion : − iuiC
D Ei ¼ Ddisp �∇ C

D Ei ð62Þ

• Turbulent mass flux : − u′
	 
i C′

	 
i ¼ − uh ii ′ Ch ii′ ¼ Dt �∇ C
D Ei ð63Þ

• Turbulent mass dispersion;− iu′ iC′
D Ei ¼ Ddisp;t �∇ C

D Ei
: ð64Þ

Here also mechanisms (63) and (64) are added up as [16];

− u′C′
D Ei ¼ 1

ρ

μtϕ

Sctϕ
∇ C
D Ei ¼ Dth ii∇ C

D Ei ¼ Dt þ Ddisp;t

� �
�∇ C

D Ei
: ð65Þ

11. Double-diffusion effects with a two-energy equation model

11.1. Mean flow

Focusing now attention to buoyancy effects only, application of the
volume average procedure to the last term of (24) leads to,

ρg β T f−Tref

� �
þ βC C−Cref

� �h iD Ev

¼ ΔV f

ΔV
1

ΔV f

Z
ΔV f

ρg β T f−Tref

� �
þ βC C−Cref

� �h i
dV : ð66Þ

Expanding the left hand side of Eq. (66) in light of Eq. (17), the buoyancy
term becomes,

ρg β T f−Tref

� �
þ βC C−Cref

� �h iD Ev

¼ ρgϕ

"
βϕ T f

D Ei−Tref

� �
þ βCϕ

〈 C 〉
i−Cref

� �#

þ ρgβϕ iT
	 
i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

¼0

þρgβCϕ
iC
	 
i|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼0

ð67Þ

where the third and forth terms on the r.h.s. are null since 〈iφ〉i = 0.Here,
coefficients βϕ and βCϕ are themacroscopic thermal and salute expansion
coefficients, respectively. Assuming that gravity is constant over the REV,
expressions for them based on Eq. (67) are given as,

βφ ¼
ρβ T f−Tref

� �D Ev

ρϕ T f

D Ei−Tref

� � ; βCφ
¼

ρ βC C−Cref

� �D Ev

ρϕ C
D Ei−Cref

� � : ð68Þ
ai Flow regime

6 1−ϕð Þ
D Laminar

1=3 (56)
4 1−ϕð Þ

D Laminar

4 1−ϕð Þ
D Turbulent
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Including Eq. (67) into Eq. (34), the macroscopic time-mean Navier–
Stokes (NS) equation for an incompressible fluidwith constant properties
is given as,

ρ∇ � uDuD

ϕ

� �
¼ −∇ ϕ ph ii

� �
þ μ∇2uD þ∇ � −ρϕ 〈 u′u′ 〉

i
� �

− ρgϕ

"
βϕ T f

D Ei−Tref

� �
þ βCϕ

〈 C 〉
i−Cref

� �#

− μϕ
K

uD þ cFϕρ juDjuDffiffiffiffi
K

p
 � ð69Þ

where the superscript * on the pressure gradient that would appear
in Eq. (69) by the volume-average of Eq. (24), has been dropped.

As pointed out by [16], it is interesting to comment on role of
coefficients βϕ and βCϕ

on the overall mixture density value. Here,
only fluids that became less dense with increasing temperature
are considered. However, two situations might occur when increas-

ing C
D Ei

, namely the mixture might become less dense with the ad-

dition of a lighter solute, or else, a denser fluid may result by mixing
a heavier component to it. Implications of that on the stability of
the entire fluid system were discussed in ref. [16] where more
details can be found.

11.2. Turbulent field

As mentioned, this work extends and combines earlier develop-
ments for turbulent double-diffusion using the thermal equilibrium
model [16] with the hypothesis of thermal non-equilibrium [17]. For
clear fluid, the buoyancy contribution to the k equation is given by
Eqs. (31) and (32).

Volume averaging Eq. (31) in reference [16] has resulted in the term,

GTh iv ¼ Gi
β ¼ −ρβg � u0T ′

f

D Ev ¼ −ρβk
ϕ ϕg � u0T ′

f

D Ei

¼ βk
ϕϕ

μ tϕ

Prtϕ
g �∇ T f

D Ei ð70Þ

where themodel in Eq. in (29) has been applied. Eq. (70) represents an
additional macroscopic generation/destruction rate of 〈k〉i due to
temperature variation in porous media, where βϕ

k is a macroscopic

coefficient given by βk
ϕ ¼

β u0T ′
f

D Ev

ϕ u0T ′
f

D Ei . In reference [16], coefficients β

(Eq. (10)), βϕ (Eq. (68)) and βϕ
k (Eq. (70)) were all assumed to be

equal, for simplicity. Also, in ref. [16] the temperature used in Eq. (70)
was the same regardless of the phase. Here, however, it is the gradient

of the intrinsic fluid temperature T f

D Ei
that is considered to promote

the driving mechanism to generate/destroy turbulence.
In order to add the effect of concentration variation within the fluid,

one applies the volume average operator to Eq. (32) such that,

GCh iv ¼ Gi
βC

¼ −ρβC g � u0C′
D Ev ¼ −ρβk

Cϕ
ϕg � u0C′

D Ei ð71Þ

where the coefficient βk
Cφ
, for a constant value of g within the REV, is

given by βk
Cϕ

¼ βCu
0C′

	 
v

ϕ u0C′
	 
i , which, in turn, is not necessarily equal to βCϕ

given by Eq. (68). However, for the sake of simplicity and in the
absence of better information, one can use a similar argument as in

reference [16] and make use of the assumption βC ¼ βCϕ
¼ βk

Cϕ
.

Further, expanding the r.h.s. of Eq. (71) in light of Eqs. (17) and
(19), one has

−ρβk
Cϕ

ϕg � u′C′
D Ei

¼ −ρβk
Cϕ

ϕg � 〈 u′
	 
i þ iu′Þð C′

	 
i þ iC′
� �

〉
i

¼ −ρβk
Cϕ

ϕg � u′
	 
i C′

	 
iD Ei þ iu′ iC′
D Ei þ u′

	 
i iC′
D Ei þ iu′ C′

	 
iD Ei
� �

¼ −ρβk
Cϕ

ϕg � uh ii′ Ch ii′|fflfflfflfflfflffl{zfflfflfflfflfflffl}
I

þ iu′ iC′
D Ei

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
II

þ u′
	 
i iC′

	 
i|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼0

þ iu′
	 
i C′

	 
i|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼0

0
BB@

1
CCA
ð72Þ

The last two terms on the right of Eq. (72) are null since 〈iC′〉i = 0
and 〈iu′〉i = 0. In addition, the following physical significance can be
inferred to the two remaining terms, which were fully commented
upon in ref. [16] and for that they will be just listed:

I. Generation/destruction rate of turbulence energy due to macroscopic
concentration fluctuations,

II. Generation/destruction rate due to turbulent concentration
dispersion.

A model for Eq. (72) is still needed in order to solve an equation for
〈k〉i, which is a necessary information when computing μ tϕ using

Eq. (37). Consequently, terms I and II above have to be modeled as a

function of average concentration, C
D Ei

. To accomplish this, a gradient

type diffusion model is used, in the form,

• Buoyancy generation of 〈k〉i due to turbulent salute fluctuations:

−ρβk
Cϕ
ϕg � uh ii′ Ch ii ′ ¼ ρβk

Cϕ
ϕg � Dt �∇ C

D Ei
� �

: ð73Þ

• Buoyancy generation of 〈k〉i due to turbulent salute dispersion:

−ρβk
Cϕ
ϕg � iu′ iC′

D Ei ¼ ρβk
Cϕ
ϕg � Ddisp;t �∇ C

D Ei
� �

: ð74Þ

The buoyancy concentration coefficients seen above, namely Dt and
Ddisp,t, were used before in Eqs. (63) and (64), respectively. Note that the
terms given by Eqs. (73) and (74) arise only if the flow is turbulent and
if buoyancy is of importance.

Using then Eq. (65) themacroscopic buoyancy generation of k due to
concentration fluctuations can be modeled as,

Gi
βC

¼ −ρβk
Cϕ

ϕg � u0C′
D Ei

¼ ρβk
Cϕ

ϕg � ½ Dt þ Ddisp;t

� �
�∇ 〈 C 〉

i� ¼ βk
Cϕ

ϕ
μ tϕ

Sctϕ
g �∇ 〈 C 〉

i ð75Þ

where μ tφ
, Sctϕ and the two coefficients Dt and Ddisp,t have been defined

before.
Final transport equations for kh ii ¼ u′ � u′

D Ei
=2 and εh ii ¼ μ

∇u′: ∇u′ð ÞT
D Ei

=ρ, in their so-called High Reynolds number form can

now include the buoyancy generation terms due to temperature and
concentration fluctuations as,

ρ∇ � uD kh ii
� �

¼ ∇ � μ þ
μtϕ

σk

� �
∇ ϕ kh ii
� � �

þ Pi þ Gi þ Gi
β þ Gi

βC
−ρϕ εh ii

ð76Þ
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ρ∇ � uD εh ii
� �

¼ ∇ � μ þ
μ tϕ

σε

� �
∇ ϕ εh ii
� � �

þ εh ii
kh ii c1P

i þ c2G
i þ c1 Gi

β þ Gi
βC

� �
−c2ρϕ εh ii

h i
ð77Þ

where, σk = 1, σε = 1.3, c1 = 1.44, c2 = 1.92, cμ = 0.09 and ck = 0.28
are non-dimensional constants (see ref. [15]). The production terms have
the following physical significance:

1. Pi ¼ −ρ u′u′
D Ei

: ∇uD is the production rate of 〈k〉i due to gradients
of u D̅;

2. Gi ¼ ckρ
ϕ kh ii juD jffiffiffi

K
p is the generation rate of the intrinsic average of 〈k〉i

due to the action of the porous matrix;

3. Gi
β ¼ βk

ϕϕ
μtϕ
Prtϕ

g �∇ T f
	 
i

is the generation of 〈k〉i due tomean temper-

ature variation within the fluid, and

4. Gi
βC

¼ βk
Cϕ
ϕ

μ tϕ
Sctϕ

g �∇ C
D Ei

is the generation of 〈k〉i due to concentra-

tion gradients.
12. Conclusions

In this work, equations were derived for turbulent double-diffusive
natural convection in porous media. Derivations were carried out
under the light of the double decomposition concept [15]. Extra terms
appearing in the equations needed to be modeled in terms of uD, T f

	 

and C

D E
. Here, two differentmodels were combined in order to broaden

the ability to analyze more complex flow systems. The first model dealt
with characterizing turbulent double-diffusivemechanismbutwas lim-
ited to situations were the so-called thermal equilibrium between
phases applied [16]. In addition, the second description of turbulent
flow in porous media made no consideration about buoyancy effects
but was able to handle situations where the difference in both the
fluid and the solid material was considerable [17]. By combining the
two models in one single mathematical characterization, the work
herein aims at extending the tool described in detail in ref. [15] to
solve an ever-broader range of practical problems in engineering.
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